Neural Network Based Real-time Detection Of Glucose Using A Non-chemical Optical Sensor Approach

Author(s):  
F.M. Ham ◽  
G.M. Cohen ◽  
Byoungho Cho
Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


2021 ◽  
Author(s):  
Yiming Lou ◽  
Zelin Hu ◽  
Miao Li ◽  
Hualong Li ◽  
Xuanjiang Yang ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 28313-28319
Author(s):  
Bandita Kalita ◽  
Priyanka Dutta ◽  
Neelotpal Sen Sarma

Photographs of fluorescent bioconjugate RC which acts as a very simple and highly efficient optical sensor with practical applicability for real-time detection of picric acid.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 191
Author(s):  
Bo Gong ◽  
Daji Ergu ◽  
Ying Cai ◽  
Bo Ma

Wheat head detection can estimate various wheat traits, such as density, health, and the presence of wheat head. However, traditional detection methods have a huge array of problems, including low efficiency, strong subjectivity, and poor accuracy. In this paper, a method of wheat-head detection based on a deep neural network is proposed to enhance the speed and accuracy of detection. The YOLOv4 is taken as the basic network. The backbone part in the basic network is enhanced by adding dual spatial pyramid pooling (SPP) networks to improve the ability of feature learning and increase the receptive field of the convolutional network. Multilevel features are obtained by a multipath neck part using a top-down to bottom-up strategy. Finally, YOLOv3′s head structures are used to predict the boxes of wheat heads. For training images, some data augmentation technologies are used. The experimental results demonstrate that the proposed method has a significant advantage in accuracy and speed. The mean average precision of our method is 94.5%, and the detection speed is 71 FPS that can achieve the effect of real-time detection.


Sign in / Sign up

Export Citation Format

Share Document