Comparison of time/frequency methods applied to uterine EMG for bursts instantaneous frequency tracking

Author(s):  
J. Duchene ◽  
D. Devedeux ◽  
G. Germain ◽  
S. Mansour ◽  
C. Marque
Author(s):  
D. A. Kechik ◽  
Yu. P. Aslamov ◽  
I. G. Davydov

Problem of estimation of variated frequency of components of polyharmonic signals has been arose. Three-dimensional time-frequency representation of signals is usually used to resolve this problem. But simple and reliable method of instantaneous frequency tracking is needed. Frequency tracking method based on estimation of shifts of peaks of spectrogram has been proposed in this paper. It is assumed that shift of spectral peaks of components of signal is proportional to variation of fundamental frequency. Logarithmic scaling of time-frequency representation is used to make spectral peaks equidistant. Temporal dependence of shift of spectral maximums is obtained using correlation of windowed spectrum at the first frame and spectrum of signal in the current window. Then obtained track is translated in linear scale. Proposed method does not estimate values of instantaneous frequency or central frequency of signal component but estimates its variation. Advantage of the method is that it can estimate frequency track even if range of frequency variation and its central value are known roughly or unknown at all. Multiple components do not interfere to estimate fundamental frequency variation. Reduction of bandwidth is recommended to increase accuracy of frequency track estimation, but analysis of time-frequency representation containing a few components is also possible. Dependency of performance of analysis of synthetic signals using the method on various signal to noise ratios under different conditions was estimated. Applicability of the method for vibrational diagnosing of rotary equipment was checked out using spectral interference method.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


Author(s):  
Igor Djurović

AbstractFrequency modulated (FM) signals sampled below the Nyquist rate or with missing samples (nowadays part of wider compressive sensing (CS) framework) are considered. Recently proposed matching pursuit and greedy techniques are inefficient for signals with several phase parameters since they require a search over multidimensional space. An alternative is proposed here based on the random samples consensus algorithm (RANSAC) applied to the instantaneous frequency (IF) estimates obtained from the time-frequency (TF) representation of recordings (undersampled or signal with missing samples). The O’Shea refinement strategy is employed to refine results. The proposed technique is tested against third- and fifth-order polynomial phase signals (PPS) and also for signals corrupted by noise.


2013 ◽  
Vol 93 (5) ◽  
pp. 1392-1397 ◽  
Author(s):  
Ljubiša Stanković ◽  
Miloš Daković ◽  
Thayananthan Thayaparan

Author(s):  
S Olhede ◽  
A.T Walden

In this paper, we introduce a flexible approach for the time-frequency analysis of multicomponent signals involving the use of analytic vectors and demodulation. The demodulated analytic signal is projected onto the time-frequency plane so that, as closely as possible, each component contributes exclusively to a different ‘tile’ in a wavelet packet tiling of the time-frequency plane, and at each time instant, the contribution to each tile definitely comes from no more than one component. A single reverse demodulation is then applied to all projected components. The resulting instantaneous frequency of each component in each tile is not constrained to a set polynomial form in time, and is readily calculated, as is the corresponding Hilbert energy spectrum. Two examples illustrate the method. In order better to understand the effect of additive noise, the approximate variance of the estimated instantaneous frequency in any tile has been formulated by starting with pure noise and studying its evolving covariance structure through each step of the algorithm. The validity and practical utility of the resulting expression for the variance of the estimated instantaneous frequency is demonstrated via a simulation experiment.


Sign in / Sign up

Export Citation Format

Share Document