Turning Dynamics: Part 1 — Experimental Analysis

Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.


Author(s):  
Igor Djurović

AbstractFrequency modulated (FM) signals sampled below the Nyquist rate or with missing samples (nowadays part of wider compressive sensing (CS) framework) are considered. Recently proposed matching pursuit and greedy techniques are inefficient for signals with several phase parameters since they require a search over multidimensional space. An alternative is proposed here based on the random samples consensus algorithm (RANSAC) applied to the instantaneous frequency (IF) estimates obtained from the time-frequency (TF) representation of recordings (undersampled or signal with missing samples). The O’Shea refinement strategy is employed to refine results. The proposed technique is tested against third- and fifth-order polynomial phase signals (PPS) and also for signals corrupted by noise.


2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.


2013 ◽  
Vol 93 (5) ◽  
pp. 1392-1397 ◽  
Author(s):  
Ljubiša Stanković ◽  
Miloš Daković ◽  
Thayananthan Thayaparan

2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


2013 ◽  
Vol 677 ◽  
pp. 384-387 ◽  
Author(s):  
Wai Kei Ricky Kot ◽  
Luen Chow Chan

In this paper, a visualisation system will be discussed that can be used to capture the deformation profile of the sheet blank during sheet metal forming processes, such as deep drawing and shape forming. The visualisation system utilizes a 2D laser displacement sensor for deformation profile acquisition. The sensor is embedded in the die and the laser propagates through the die to detect the profile change of the specimen concealed in the die during operation. The captured profile data will be collected, manipulated and transferred to a monitor for display via a controller. This visualisation of the deformation profile will provide engineers and researchers with an intuitive means of analysing and diagnosing the deformation process during sheet metal forming.


2014 ◽  
Vol 628 ◽  
pp. 186-189
Author(s):  
Meng Xiong Zeng ◽  
Jin Feng Zhao ◽  
Wen Ouyang

The control system performance requirement was divided into three parts. They were the stability, rapidity and accuracy. The time-frequency domain analysis in the requirements of three performance were measured through quantitative performance index. The mutual restriction of time-frequency performance and system characteristic parameters of normal second order was discussed. The correlation of system time-frequency performance index was established. The relationship between time-frequency performance indexes in standard two order system was extended to higher order system. The mutually constraining and time-frequency correlation between each performance index was obtained by analysis and calculation. The work had been done above had practical significance to reflect the system dynamic performance in different analytical domains.


1999 ◽  
Author(s):  
Masatake Shiraishi ◽  
Gongjun Yang

Abstract A laser displacement sensor which has a resolution of 0.5 μm was used to determine the measurement of a curved workpiece profile in turning. This sensor is attached to a specially designed stage and is operated by three motors which are controlled by a fuzzy control algorithm. The experimental results show that the measuring system can be applied to workpieces having inclination angles of up to around 45°. The proposed measuring system has a practical measuring accuracy to within ten micrometers.


Author(s):  
Ruigui Pan ◽  
Huw G. Davies

Abstract Nonstationary response of a two-degrees-of-freedom system with quadratic coupling under a time varying modulated amplitude sinusoidal excitation is studied. The nonlinearly coupled pitch and roll ship model is based on Nayfeh, Mook and Marshall’s work for the case of stationary excitation. The ship model has a 2:1 internal resonance and is excited near the resonance of the pitch mode. The modulated excitation (F0 + F1 cos ωt) cosQt is used to model a narrow band sea-wave excitation. The response demonstrates a variety of bifurcations, loss of stability, and chaos phenomena that are not present in the stationary case. We consider here the periodically modulated response. Chaotic response of the system is discussed in a separate paper. Several approximate solutions, under both small and large modulating amplitudes F1, are obtained and compared with the exact one. The stability of an exact solution with one mode having zero amplitude is studied. Loss of stability in this case involves either a rapid transition from one of two stable (in the stationary sense) branches to another, or a period doubling bifurcation. From Floquet theory, various stability boundary diagrams are obtained in F1 and F0 parameter space which can be used to predict the various transition phenomena and the period-2 bifurcations. The study shows that both the modulation parameters F1 and ω (the modulating frequency) have great effect on the stability boundaries. Because of the modulation, the stable area is greatly expanded, and the stationary bifurcation point can be exceeded without loss of stability. Decreasing ω can make the stability boundary very complicated. For very small ω the response can make periodic transitions between the two (pseudo) stable solutions.


Sign in / Sign up

Export Citation Format

Share Document