scholarly journals Estimating the Instantaneous Frequency of Linear and Nonlinear Frequency Modulated Radar Signals—A Comparative Study

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2840
Author(s):  
Hubert Milczarek ◽  
Czesław Leśnik ◽  
Igor Djurović ◽  
Adam Kawalec

Automatic modulation recognition plays a vital role in electronic warfare. Modern electronic intelligence and electronic support measures systems are able to automatically distinguish the modulation type of an intercepted radar signal by means of real-time intra-pulse analysis. This extra information can facilitate deinterleaving process as well as be utilized in early warning systems or give better insight into the performance of hostile radars. Existing modulation recognition algorithms usually extract signal features from one of the rudimentary waveform characteristics, namely instantaneous frequency (IF). Currently, there are a small number of studies concerning IF estimation methods, specifically for radar signals, whereas estimator accuracy may adversely affect the performance of the whole classification process. In this paper, five popular methods of evaluating the IF–law of frequency modulated radar signals are compared. The considered algorithms incorporate the two most prevalent estimation techniques, i.e., phase finite differences and time-frequency representations. The novel approach based on the generalized quasi-maximum likelihood (QML) method is also proposed. The results of simulation experiments show that the proposed QML estimator is significantly more accurate than the other considered techniques. Furthermore, for the first time in the publicly available literature, multipath influence on IF estimates has been investigated.

Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
W. L. Lu ◽  
J. W. Xie ◽  
H. M. Wang ◽  
C. Sheng

AbstractModern radars use complex waveforms to obtain high detection performance and low probabilities of interception and identification. Signals intercepted from multiple radars overlap considerably in both the time and frequency domains and are difficult to separate with primary time parameters. Time–frequency analysis (TFA), as a key signal-processing tool, can provide better insight into the signal than conventional methods. In particular, among the various types of TFA, parameterized time-frequency analysis (PTFA) has shown great potential to investigate the time–frequency features of such non-stationary signals. In this paper, we propose a procedure for PTFA to separate overlapped radar signals; it includes five steps: initiation, parameterized time-frequency analysis, demodulating the signal of interest, adaptive filtering and recovering the signal. The effectiveness of the method was verified with simulated data and an intercepted radar signal received in a microwave laboratory. The results show that the proposed method has good performance and has potential in electronic reconnaissance applications, such as electronic intelligence, electronic warfare support measures, and radar warning.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1477 ◽  
Author(s):  
Xinqun Liu ◽  
Tao Li ◽  
Xiaolei Fan ◽  
Zengping Chen

The Nyquist folding receiver (NYFR) can achieve a high-probability interception of an ultra-wideband (UWB) signal with fewer devices, while the output of the NYFR is converted into a hybrid modulated signal of the local oscillator (LO) and the received signal, which requires the matching parameter estimation methods. The linear frequency modulation (LFM) signal is a typical low probability of intercept (LPI) radar signal. In this paper, an estimation method of both the Nyquist Zone (NZ) index and the chirp rate for the LFM signal intercepted by NYFR was proposed. First, according to the time-frequency characteristics of the LFM signal, the accurate NZ and the rough chirp rate was estimated based on least squares (LS) and random sample consensus (RANSAC). Then, the information of the LO was removed from the hybrid modulated signal by the known NZ, and the precise chirp rate was obtained by using the fractional Fourier transform (FrFT). Moreover, a fast search method of FrFT optimal order was presented, which could obviously reduce the computational complexity. The simulation demonstrated that the proposed method could precisely estimate the parameters of the hybrid modulated output signal of the NYFR.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 725 ◽  
Author(s):  
Jian Wan ◽  
Xin Yu ◽  
Qiang Guo

The electronic reconnaissance system is the operational guarantee and premise of electronic warfare. It is an important tool for intercepting radar signals and providing intelligence support for sensing the battlefield situation. In this paper, a radar waveform automatic identification system for detecting, tracking and locating low probability interception (LPI) radar is studied. The recognition system can recognize 12 different radar waveform: binary phase shift keying (Barker codes modulation), linear frequency modulation (LFM), Costas codes, polytime codes (T1, T2, T3, and T4), and polyphase codes (comprising Frank, P1, P2, P3 and P4). First, the system performs time–frequency transform on the LPI radar signal to obtain a two-dimensional time–frequency image. Then, the time–frequency image is preprocessed (binarization and size conversion). The preprocessed time–frequency image is then sent to the convolutional neural network (CNN) for training. After the training is completed, the features of the fully connected layer are extracted. Finally, the feature is sent to the tree structure-based machine learning process optimization (TPOT) classifier to realize offline training and online recognition. The experimental results show that the overall recognition rate of the system reaches 94.42% when the signal-to-noise ratio (SNR) is −4 dB.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5415
Author(s):  
Ewa Swiercz ◽  
Dariusz Janczak ◽  
Krzysztof Konopko

Linear frequency-modulated (LFM) signals are the most significant example of waveform used in low probability of intercept (LPI) radars, synthetic aperture radars and modern communication systems. Thus, interception and parameter estimation of the signals is one of the challenges in Electronic Support (ES) systems. The methods, which are widely used to accomplish this task are mainly based on transformations from time to time-frequency domain, which concentrate the energy of signals along an instantaneous frequency (IF) line. The most popular examples of such transforms are the short time Fourier transform (STFT) and Wigner-Ville distribution (WVD). However, for LFM waveforms, methods that concentrate signal energy along a line in the time-frequency rate domain may allow to obtain better detection and estimation performance. This type of transformation can be obtained using the cubic phase (CP) function (CPF). In the paper, the detection of LFM waveform and its chirp rate (CR) parameter estimation based on the extended forms of the standard CPF is proposed. The CPF was originally introduced for instantaneous frequency rate (IFR) estimation for quadratic frequency modulated (QFM) signals i.e., cubic phase signals. Summation or multiplication operations on time cross-sections of the CPF allow to formulate the extended forms of the CPF. Based on these forms, detection test statistics and the estimation procedure of LFM signal parameters have been proposed. The widely known estimation methods assure satisfying accuracy for high SNR levels, but for low SNRs the reliable estimation is a challenge. The proposed approach based on joint analysis of detection and estimation characteristics allows to increase the reliability of chirp rate estimates for low SNRs. The results of Monte-Carlo simulation investigations on LFM signal detection and chirp rate estimation evaluated by the mean squared error (MSE) obtained by the proposed methods with comparisons to the Cramer-Rao lower bound (CRLB) are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ji Li ◽  
Huiqiang Zhang ◽  
Jianping Ou ◽  
Wei Wang

In the increasingly complex electromagnetic environment of modern battlefields, how to quickly and accurately identify radar signals is a hotspot in the field of electronic countermeasures. In this paper, USRP N210, USRP-LW N210, and other general software radio peripherals are used to simulate the transmitting and receiving process of radar signals, and a total of 8 radar signals, namely, Barker, Frank, chaotic, P1, P2, P3, P4, and OFDM, are produced. The signal obtains time-frequency images (TFIs) through the Choi–Williams distribution function (CWD). According to the characteristics of the radar signal TFI, a global feature balance extraction module (GFBE) is designed. Then, a new IIF-Net convolutional neural network with fewer network parameters and less computation cost has been proposed. The signal-to-noise ratio (SNR) range is −10 to 6 dB in the experiments. The experiments show that when the SNR is higher than −2 dB, the signal recognition rate of IIF-Net is as high as 99.74%, and the signal recognition accuracy is still 92.36% when the SNR is −10 dB. Compared with other methods, IIF-Net has higher recognition rate and better robustness under low SNR.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 449
Author(s):  
Kuiyu Chen ◽  
Shuning Zhang ◽  
Lingzhi Zhu ◽  
Si Chen ◽  
Huichang Zhao

Automatically recognizing the modulation of radar signals is a necessary survival technique in electronic intelligence systems. In order to avoid the complex process of the feature extracting and realize the intelligent modulation recognition of various radar signals under low signal-to-noise ratios (SNRs), this paper proposes a method based on intrapulse signatures of radar signals using adaptive singular value reconstruction (ASVR) and deep residual learning. Firstly, the time-frequency spectrums of radar signals under low SNRs are improved after ASVR denoising processing. Secondly, a series of image processing techniques, including binarizing and morphologic filtering, are applied to suppress the background noise in the time-frequency distribution images (TFDIs). Thirdly, the training process of the residual network is achieved using TFDIs, and classification under various conditions is realized using the new-trained network. Simulation results show that, for eight kinds of modulation signals, the proposed approach still achieves an overall probability of successful recognition of 94.1% when the SNR is only −8 dB. Outstanding performance proves the superiority and robustness of the proposed method.


2021 ◽  
Vol 2050 (1) ◽  
pp. 012009
Author(s):  
Fan Wang ◽  
Yifeng Huang ◽  
Ming Zhu ◽  
Jun Tang ◽  
Zhaohong Jia

Abstract For purpose of solve the problem of poor discrimination and robustness of intra-pulse signal features extracted by the traditional methods, this paper proposes a radar signal intra-pulse modulation type recognition algorithm based on the improved residual network. Firstly, one-dimensional time-domain radar signal is converted into two-dimensional time-frequency image by Smoothing Pseudo Wigner-Ville Distribution; Then the time-frequency image is preprocessed; ResNet-50 network is chosen as the framework. In order to retain the feature map information as much as possible, the convolution kernel is increased in the residual module. The cross entropy loss function and the center loss function are used as the loss function to speed up the convergence of the network. The improved residual network is used to realize the intra-pulse modulation type recognition of radar signal. The simulation experiments show that when the SNR is -14dB, the overall average recognition accuracy of the improved algorithm for eight kinds of radar signals (CM, LFM, NLFM, BLFM, BPSK, QPSK, OPSK, LFM+BPSK) can reach 97.29%, which shows the effectiveness.


2018 ◽  
Vol 10 (10) ◽  
pp. 1134-1142 ◽  
Author(s):  
Samer Baher Safa Hanbali

AbstractPulse compression technique allows a radar to achieve the resolution of a short pulse and the energy of a long pulse simultaneously, without the requirement of high-power transmission. Therefore, pulse compression radars have a low probability of intercept capability. The common types of pulse compression signals are frequency modulated waveforms and phase-coded waveforms, which have different properties. The optimum radar signal should have good immunity against deceptive jamming, good Doppler tolerance to detect high-speed targets, and low time-sidelobe level to detect weak targets nearby the strong ones. This paper reviews the current research in the commonly used radar signals, and presents their pros and cons, and compares between them in terms of Doppler tolerance, time-sidelobe level, as well as immunity against jamming in order to provide a reference for the researchers in the field of radar systems and electronic warfare.


Sign in / Sign up

Export Citation Format

Share Document