Influence of the myelin sheath on excitation properties of nerve fibers

Author(s):  
W.M. Grill ◽  
A.G. Richardson ◽  
C.C. McIntyre
Keyword(s):  
2020 ◽  
Vol 12 (3) ◽  
pp. 035013 ◽  
Author(s):  
Suping Chen ◽  
Chengheng Wu ◽  
Amin Liu ◽  
Dan Wei ◽  
Yun Xiao ◽  
...  
Keyword(s):  

2001 ◽  
Vol 85 (1) ◽  
pp. 197-210 ◽  
Author(s):  
Lei Zhou ◽  
Shing Yan Chiu

A mathematical model is developed for simulation of action potential propagation through a single branch point of a myelinated nerve fiber with a parent branch bifurcating into two identical daughter branches. This model is based on a previously published multi-layer compartmental model for single unbranched myelinated nerve fibers. Essential modifications were made to couple both daughter branches to the parent branch. There are two major features in this model. First, the model could incorporate detailed geometrical parameters for the myelin sheath and the axon, accomplished by dividing both structures into many segments. Second, each segment has two layers, the myelin sheath and the axonal membrane, allowing voltages of intra-axonal space and periaxonal space to be calculated separately. In this model, K ion concentration in the periaxonal space is dynamically linked to the activity of axonal fast K channels underneath the myelin in the paranodal region. Our model demonstrates that the branch point acts like a low-pass filter, blocking high-frequency transmission from the parent to the daughter branches. Theoretical analysis showed that the cutoff frequency for transmission through the branch point is determined by temperature, local K ion accumulation, width of the periaxonal space, and internodal lengths at the vicinity of the branch point. Our result is consistent with empirical findings of irregular spacing of nodes of Ranvier at axon abors, suggesting that branch points of myelinated axons play important roles in signal integration in an axonal tree.


1973 ◽  
Vol 58 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Frank A. Rawlins

A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Omelian Yurakh ◽  
Oksana Popadynets ◽  
Halyna Yurakh ◽  
Mykhailo Osypchuk ◽  
Nadiya Tokaruk ◽  
...  

One of the unsolved issues in neuromorphology is the classification of myelin nerve fibers (MNF). Objective: to use cluster analysis to classify the sciatic nerve MNF. Material and methods. The work was performed using 5 one-year-old male Wistar rats. Semi-thin sections were stained with methylene blue. MNF morphometry was performed using ImageJ, and statistical processing – using the software environment R. Results of the study. Ward’s and k-means methods were used to cluster the MNF. Three clusters of MNFs are defined and their parameters are determined. The presented algorithm for adapting the literature data to the format of the obtained results includes determining the total average for the combined set of each indicator and the total variance, which is the sum of intragroup and intergroup variances. Conclusions: 1) for the classification of MNF it is advisable to use cluster analysis; 2) clustering should be performed according to the transsection areas of the axial cylinder and myelin sheath; 3) the number of clusters is determined by the agglomerative method of Ward, and their metrics – by the iterative method of k-means; 4) three clusters of MNF of the rat sciatic nerve differ in the transsection areas of the fibers, the axial cylinder and the myelin sheath and the percentage of nerve fibers; 5) when comparing identical indicators according to the obtained and literature data, the results were equivalent in the areas of the axial cylinder and myelin sheath and their shape coefficients, despite the fact that the classification of myelin fibers and their morphometry was performed using different methods.


1955 ◽  
Vol 1 (4) ◽  
pp. 271-278 ◽  
Author(s):  
J. David Robertson

Adult chameleon myelinated peripheral nerve fibers have been studied with the electron microscope in thin sections. The outer lamella of the myelin sheath has been found to be connected as a double membrane to the surface of the Schwann cell. The inner lamella is connected as a similar double membrane with the double axon-Schwann membrane. The relations of these double connecting membranes suggest that the layered myelin structure is composed of a double membrane which is closely wound about the axon as a helix. These findings support the new theory of myelinogenesis proposed recently by Geren. The possible significance of these results with respect to cell surface membranes and cytoplasmic double membranes is discussed.


Sign in / Sign up

Export Citation Format

Share Document