A new approach to current density impedance imaging

Author(s):  
K.F. Hasanov ◽  
A.W. Ma ◽  
R.S. Yoon ◽  
A.I. Nachman ◽  
M.L. Joy
2020 ◽  
Vol 52 (5) ◽  
pp. 4506-4523
Author(s):  
Robert Lopez ◽  
Amir Moradifam

2008 ◽  
Vol 27 (9) ◽  
pp. 1301-1309 ◽  
Author(s):  
K.F. Hasanov ◽  
A.W. Ma ◽  
A.I. Nachman ◽  
M.L.G. Joy

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Amir Moradifam ◽  
Robert Lopez

<p style='text-indent:20px;'>This paper is a continuation of the authors earlier work on stability of Current Density Impedance Imaging (CDII) [R. Lopez, A. Moradifam, Stability of Current Density Impedance Imaging, SIAM J. Math. Anal. (2020).] We show that CDII is stable with respect to errors in both measurement of the magnitude of the current density vector field in the interior and the measurement of the voltage potential on the boundary. This completes the authors study of the stability of Current Density Independence Imaging which was previously shown only by numerical simulations.</p>


2021 ◽  
Author(s):  
Kangping Hu ◽  
Christopher E. Arcadia ◽  
Jacob K. Rosenstein

AbstractThis paper presents a 100 × 100 super-resolution integrated sensor array for microscale electrochemical impedance spectroscopy (EIS) imaging. The system is implemented in 180 nm CMOS with 10 μm × 10 μm pixels. Rather than treating each electrode independently, the sensor is designed to measure the mutual capacitance between programmable sets of pixels. Multiple spatially-resolved measurements can then be computationally combined to produce super-resolution impedance images. Experimental measurements of sub-cellular permittivity distributions within single algae cells demonstrate the potential of this new approach.


1995 ◽  
Vol 391 ◽  
Author(s):  
E.E. Glickman ◽  
L.M. Klinger

AbstractWe present a new approach to understand the mechanism of "homogeneous", or Blech electromigration (EM). This phenomenon describes macroscopically homogeneous displacement of the up-wind edge of thin film lines in microelectronic devices and is responsible for openings at contact windows, "vias" and other sites of perfect diffusion flux divergence.Our SEM, EPMA and EM drift velocity experiments have revealed the gradual transition from the microscopically homogeneous EM displacement to the highly nonhomogeneous mode wherein copious islands of residual material remain behind the drifting cathode edge of aluminum stripes. The transition is shown to occur due to an increase in either the current density, j, or in the stripe length, 1. The latter case suggests, that the transition results from the growth of the net grain boundary (GB) diffusion flux, I=le-Ib ,where Ie∝j and 1b∝1/1 are the EM flux and stress-gradient-driven back flux, respectively.Based upon recent progress in the theory of GB grooving under "external" GB fluxes, with surface diffusion acting as the healing mechanism, grooves' propagation along the line and their merging is considered to be the micromechanism of the "homogeneous" EM. In terms of the simple model described, the transition from the slow receding of the cathode butt edge slightly wrinkled by shallow grooves (A-regime of EM) to the fast extension and merging of slot -like grooves (B-regime) accounts for the transition observed in EM mode, while in both regimes the EM displacement velocity, V, is presumed to represent the groove propagation rate.The theory developed reduces to Blech formulae for V for the truly homogeneous A-regime and predicts quite different EM kinetics for the B-regime of microscopically nonhomogeneous EM. The latter is expected to dominate for films loaded by high current density with large grains and low surface diffusion.The dependence obtained for the residual mass left behind the drifted edge vs the displacement velocity, V, for unpassivated aluminum stripes of various lengths, loaded by j=2-106 A/cm2 at 548K provides a good evidence in support of a new approach.


2016 ◽  
Vol 34 (12) ◽  
pp. 1165-1173
Author(s):  
Marek Vandas ◽  
Eugene P. Romashets

Abstract. The Euler potentials for two current layers aligned to an ambient homogeneous magnetic field are found. Previous treatment of such a system assumed constant current density in the layers. However, the magnetic field becomes infinite at the edges. The new approach eliminates this inconsistency by introducing an inhomogeneous current density. Euler potentials are constructed semi-analytically for such a system. Charged-particle motion and trapping in it are examined by this representation. Using Euler potentials, the influence of current sheets of zero and non-zero thicknesses on energetic-particle fluxes is investigated, and characteristic flux variations near the sheets are presented. The results can be applied to Birkeland currents.


Sign in / Sign up

Export Citation Format

Share Document