scholarly journals Stability of Current Density Impedance Imaging

2020 ◽  
Vol 52 (5) ◽  
pp. 4506-4523
Author(s):  
Robert Lopez ◽  
Amir Moradifam
2008 ◽  
Vol 27 (9) ◽  
pp. 1301-1309 ◽  
Author(s):  
K.F. Hasanov ◽  
A.W. Ma ◽  
A.I. Nachman ◽  
M.L.G. Joy

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Amir Moradifam ◽  
Robert Lopez

<p style='text-indent:20px;'>This paper is a continuation of the authors earlier work on stability of Current Density Impedance Imaging (CDII) [R. Lopez, A. Moradifam, Stability of Current Density Impedance Imaging, SIAM J. Math. Anal. (2020).] We show that CDII is stable with respect to errors in both measurement of the magnitude of the current density vector field in the interior and the measurement of the voltage potential on the boundary. This completes the authors study of the stability of Current Density Independence Imaging which was previously shown only by numerical simulations.</p>


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits, the Cu being added since it improves resistance to electromigration failure. As linewidths decrease to submicrometer dimensions, the current density carried by the interconnect increases dramatically and the probability of electromigration failure increases. To increase the robustness of the interconnect lines to this failure mode, an understanding of the mechanism by which Cu improves resistance to electromigration is needed. A number of theories have been proposed to account for role of Cu on electromigration behavior and many of the theories are dependent of the elemental Cu distribution in the interconnect line. However, there is an incomplete understanding of the distribution of Cu within the Al interconnect as a function of thermal history. In order to understand the role of Cu in reducing electromigration failures better, it is important to characterize the Cu distribution within the microstructure of the Al-Cu metallization.


Author(s):  
P. J. Lee ◽  
D. C. Larbalestier

Several features of the metallurgy of superconducting composites of Nb-Ti in a Cu matrix are of interest. The cold drawing strains are generally of order 8-10, producing a very fine grain structure of diameter 30-50 nm. Heat treatments of as little as 3 hours at 300 C (∼ 0.27 TM) produce a thin (1-3 nm) Ti-rich grain boundary film, the precipitate later growing out at triple points to 50-100 nm dia. Further plastic deformation of these larger a-Ti precipitates by strains of 3-4 produces an elongated ribbon morphology (of order 3 x 50 nm in transverse section) and it is the thickness and separation of these precipitates which are believed to control the superconducting properties. The present paper describes initial attempts to put our understanding of the metallurgy of these heavily cold-worked composites on a quantitative basis. The composite studied was fabricated in our own laboratory, using six intermediate heat treatments. This process enabled very high critical current density (Jc) values to be obtained. Samples were cut from the composite at many processing stages and a report of the structure of a number of these samples is made here.


Sign in / Sign up

Export Citation Format

Share Document