Distribution network congestion management by means of electric vehicle smart charging within a multi-microgrid environment

Author(s):  
G. Del-Rosario-Calaf ◽  
M. Cruz-Zambrano ◽  
C. Corchero ◽  
R. Gumara-Ferret
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2820 ◽  
Author(s):  
Hui Sun ◽  
Peng Yuan ◽  
Zhuoning Sun ◽  
Shubo Hu ◽  
Feixiang Peng ◽  
...  

With the popularization of electric vehicles, free charging behaviors of electric vehicle owners can lead to uncertainty about charging in both time and space. A time-spatial dispatching strategy for the distribution network guided by electric vehicle charging fees is proposed in this paper, which aims to solve the network congestion problem caused by the unrestrained and free charging behaviors of large numbers of electric vehicles. In this strategy, congestion severity of different lines is analyzed and the relationship between the congested lines and the charging stations is clarified. A price elastic matrix is introduced to reflect the degree of owners’ response to the charging prices. A pricing scheme for optimal real-time charging fees for multiple charging stations is designed according to the congestion severity of the lines and the charging power of the related charging stations. Charging price at different charging station at different time is different, it can influence the charging behaviors of vehicle owners. The simulation results confirmed that the proposed congestion dispatching strategy considers the earnings of the operators, charging cost to the owners and the satisfaction of the owners. Moreover, the strategy can influence owners to make judicious charging plans that help to solve congestion problems in the network and improve the safety and economy of the power grid.


2019 ◽  
Vol 10 (1) ◽  
pp. 14 ◽  
Author(s):  
Marte K. Gerritsma ◽  
Tarek A. AlSkaif ◽  
Henk A. Fidder ◽  
Wilfried G.J.H.M. van Sark

This paper proposes a method for analyzing and simulating the time-dependent flexibility of electric vehicle (EV) demand. This flexibility is influenced by charging power, which depends on the charging stations, the EV characteristics, and several environmental factors. Detailed charging station data from a Dutch case study have been analysed and used as input for a simulation. In the simulation, the interdependencies between plug-in time, connection duration, and required energy are respected. The data analysis of measured data reveals that 59% of the aggregated EV demand can be delayed for more than 8 h, and 16% for even more than 24 h. The evening peak shows high flexibility, confirming the feasibility of congestion management using smart charging within flexibility constraints. The results from the simulation show that the average daily EV demand increases by a factor 21 between the ‘Present-day’ and the ‘High’ scenario, while the maximum EV demand peak increases only by a factor 6, as a result of the limited simultaneity of the transactions. Further, simulations using the average charging power of individual measured transactions yield more accurate results than simulations using a fixed value for charging power. The proposed method for simulating future EV flexibility provides a basis for testing different smart charging algorithms.


10.6036/10013 ◽  
2021 ◽  
Vol 96 (3) ◽  
pp. 264-269
Author(s):  
PILAR CALATAYUD MARTÍ ◽  
JULIAN ROMERO CHAVARRO ◽  
MARIO MONTAGUD AGUAR ◽  
LUCIA ARCOS USERO ◽  
MARTA GARCÍA PELLICER ◽  
...  

The secure integration of electric vehicle (EV) plays a key role in the energy transition through a resilient and decarbonised economy. However, a massive EV penetration means a rise in electricity demand with negative consequences to the distribution systems (voltage drops, branches congestion, etc) if the charging infrastructure is not cybersecure and does not perform smart charging mechanisms. Furthermore, these new infrastructures and their operating procedures provide new chances to cyberattacks to be performed, aimed at either exploiting those grid vulnerabilities or acquiring some user’s private information. Therefore, to ease the secure integration of EV charging infrastructures in the future network, this paper presents a three-level actuation methodology for charging infrastructures, which includes active management of EV supply equipment (EVSE) to allow dynamic control of charges, installation of ancillary protection systems, planning of EVSE’s location within the distribution system and cybersecure management of the whole infrastructure. The presented methodology is based on a thorough analysis of the possible cyberattacks that may occur during the transactions of the charging process, as well as tests carried out on a real pilot, which demonstrate the possible impacts that an uncontrolled charging of the EV can have on the distribution network, thus identifying the vulnerabilities of the distribution network. Keywords: Smart Grid, electrification, electric vehicle, charging station, Charge point operator, cybersecurity, smart charging.


2017 ◽  
Vol 11 (3) ◽  
pp. 665-675 ◽  
Author(s):  
Anna Kulmala ◽  
Monica Alonso ◽  
Sami Repo ◽  
Hortensia Amaris ◽  
Angeles Moreno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document