A Generalized Method For Scanning Characteristics Evaluation Of Of Microstrip The Mutual Coupling Effect On The Radiation And Array Antenna.

Author(s):  
A.A.M. Ali ◽  
B.R. Vishvakarma
2021 ◽  
Vol 23 (08) ◽  
pp. 437-442
Author(s):  
Rohini G.Bhatkoorse ◽  
◽  
Dr. Mahesh A ◽  

The microstrip patch array antenna is usually designed as a broadside radiator. The radiating area of the patch can be of any planar shape from elliptical to square, but rectangular is preferred over other shapes. When elements of antenna are repeated, it is called as an array of antennas. When the distance between antennas is reduced, mutual coupling effect occurs. This effect occurs when the distance between the antennas is less than 0.5and this affects the gain and efficiency of the antennas. This effect can be reduced by using metamaterials. To reduce the mutual coupling between the antenna elements the metamaterial structure is artificially designed to obtain negative permittivity and permeability using HFSS and the results are verified using MATLAB. These metamaterials are placed between the patch elements of 1×2 circularly polarized array antenna when the distance between the patches is 0.2 for both RT duroid and FR4 epoxy substrate for 5GHz resonant frequency.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 424 ◽  
Author(s):  
Peng Chen ◽  
Zhenxin Cao ◽  
Zhimin Chen ◽  
Linxi Liu ◽  
Man Feng

The performance of a direction-finding system is significantly degraded by the imperfection of an array. In this paper, the direction-of-arrival (DOA) estimation problem is investigated in the uniform linear array (ULA) system with the unknown mutual coupling (MC) effect. The system model with MC effect is formulated. Then, by exploiting the signal sparsity in the spatial domain, a compressed-sensing (CS)-based system model is proposed with the MC coefficients, and the problem of DOA estimation is converted into that of a sparse reconstruction. To solve the reconstruction problem efficiently, a novel DOA estimation method, named sparse-based DOA estimation with unknown MC effect (SDMC), is proposed, where both the sparse signal and the MC coefficients are estimated iteratively. Simulation results show that the proposed method can achieve better performance of DOA estimation in the scenario with MC effect than the state-of-the-art methods, and improve the DOA estimation performance about 31.64 % by reducing the MC effect by about 4 dB.


Sign in / Sign up

Export Citation Format

Share Document