A multi-channel atmospheric correction algorithm for remote sensing of coastal waters

Author(s):  
Bo-Cai Gao ◽  
Marcos J. Montes ◽  
Rong-Rong Li
2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2019 ◽  
Vol 11 (19) ◽  
pp. 2297 ◽  
Author(s):  
Kristi Uudeberg ◽  
Ilmar Ansko ◽  
Getter Põru ◽  
Ave Ansper ◽  
Anu Reinart

The European Space Agency’s Copernicus satellites Sentinel-2 and Sentinel-3 provide observations with high spectral, spatial, and temporal resolution which can be used to monitor inland and coastal waters. Such waters are optically complex, and the water color may vary from completely clear to dark brown. The main factors influencing water color are colored dissolved organic matter, phytoplankton, and suspended sediments. Recently, there has been a growing interest in the use of the optical water type (OWT) classification in the remote sensing of ocean color. Such classification helps to clarify relationships between different properties inside a certain class and quantify variation between classes. In this study, we present a new OWT classification based on the in situ measurements of reflectance spectra for boreal region lakes and coastal areas without extreme optical conditions. This classification divides waters into five OWT (Clear, Moderate, Turbid, Very Turbid, and Brown) and shows that different OWTs have different remote sensing reflectance spectra and that each OWT is associated with a specific bio-optical condition. Developed OWTs are distinguishable by both the MultiSpectral Instrument (MSI) and the Ocean and Land Color Instrument (OLCI) sensors, and the accuracy of the OWT assignment was 95% for both the MSI and OLCI bands. To determine OWT from MSI images, we tested different atmospheric correction (AC) processors, namely ACOLITE, C2RCC, POLYMER, and Sen2Cor and for OLCI images, we tested AC processors ALTNNA, C2RCC, and L2. The C2RCC AC processor was the most accurate and reliable for use with MSI and OLCI images to estimate OWTs.


2012 ◽  
Vol 490-495 ◽  
pp. 1337-1341
Author(s):  
Zhi Wu Ke ◽  
Rui Yu ◽  
Rui Xiang ◽  
Ke Long Zhang ◽  
Yong Ma

According to the reduction of submarine noise level, Non-acoustics antisubmarine detection method becomes more important for the ocean remote sensing, especially infrared (IR) imaging remote sensing detection method. Conventional IR imaging remote sensing antisubmarine detection is more difficult because modern advanced submarine IR thermal radiance is not obvious. In this paper, our main purpose is to develop the advanced IR imaging remote sensing antisubmarine detection approach by using infrared spectrometer. The IR spectrum information derived from IR spectrometer in sea water and then retrieves the water-leaving spectra by the standard atmospheric correction algorithm. The submarine is detected by analyzing the water-leaving spectrum information. Results of comparisons with conventional IR imaging remote sensing antisubmarine detection, the modified approach is available to estimate the spectrum properties and effective to antisubmarine detection in sea water


2021 ◽  
Vol 13 (24) ◽  
pp. 5062
Author(s):  
Mengmeng Yang ◽  
Yong Hu ◽  
Hongzhen Tian ◽  
Faisal Ahmed Khan ◽  
Qingping Liu ◽  
...  

Airborne hyperspectral data play an important role in remote sensing of coastal waters. However, before their application, atmospheric correction is required to remove or reduce the atmospheric effects caused by molecular and aerosol scattering and absorption. In this study, we first processed airborne hyperspectral CASI-1500 data acquired on 4 May 2019 over the Uljin coast of Korea with Polymer and then compared the performance with the other two widely used atmospheric correction approaches, i.e., 6S and FLAASH, to determine the most appropriate correction technique for CASI-1500 data in coastal waters. Our results show the superiority of Polymer over 6S and FLAASH in deriving the Rrs spectral shape and magnitude. The performance of Polymer was further evaluated by comparing CASI-1500 Rrs data with those obtained from the MODIS-Aqua sensor on 3 May 2019 and processed using Polymer. The spectral shapes of the derived Rrs from CASI-1500 and MODIS-Aqua matched well, but the magnitude of CASI-1500 Rrs was approximately 0.8 times lower than MODIS Rrs. The possible reasons for this difference were time difference (1 day) between CASI-1500 and MODIS data, higher land adjacency effect for MODIS-Aqua than for CASI-1500, and possible errors in MODIS Rrs from Polymer.


2021 ◽  
Author(s):  
Masuma Chowdhury ◽  
César Vilas ◽  
Stef VanBergeijk ◽  
Gabriel Navarro ◽  
Irene Laiz ◽  
...  

<p>Application of Sentinel-2A/B satellites to retrieve turbidity in the Guadalquivir estuary (Southern Spain)</p><p>Due to climate change, contamination, and diverse anthropogenic effects, water quality monitoring is intensifying its importance nowadays. Remote sensing techniques are becoming an important tool, in parallel with fieldwork, for supporting the cost-effective accomplishment of water quality mapping and management. In the recent years, Sentinel-2A/B twin satellites of the European Commission Earth Observation Copernicus programme emerged as a promising way to monitor complex coastal waters with higher spatial, spectral and temporal resolution. However, atmospheric and sunglint correction for the Sentinel-2 data over the coastal and inland waters is one of the major challenges in terms of accurate water quality retrieval. This study aimed at evaluating the ACOLITE atmospheric correction processor in order to develop a regional turbidity model for the Guadalquivir estuary (southern Spain) and its adjacent coastal region using Sentinel-2 imagery at a 10 m spatial resolution. Two settings for the atmospheric correction algorithm within the ACOLITE software were applied: the standard dark spectrum fitting (DSF) and the DSF with an additional option for sunglint correction. Turbidity field data were collected for calibration/validation purposes from the monthly Guadalquivir Estuary-LTER programme by Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) using a YSI-EXO2 multiparametric sonde for the period 2017-2020 at 2 fixed stations (Bonanza and Tarfia) sampling 4 different water masses along the estuary salinity gradient. Several regional models were evaluated using the red band (665 nm) and the red-edge bands (i.e. 704, 740, 783 nm) of the Sentinel-2 satellites. The results revealed that DSF with glint correction performs better than without glint correction, especially for this region where sunglint is a major concern during summer, affecting most of the satellite scenes. This study demonstrates the invaluable potential of the Sentinel-2A/B mission to monitor complex coastal waters even though they were not designed for aquatic remote sensing applications. This improved knowledge will be a helpful guideline and tool for the coastal managers, policy-makers, stakeholders and the scientific community for ensuring sustainable ecosystem-based coastal resource management under a global climate change scenario.</p>


2012 ◽  
Vol 30 (1) ◽  
pp. 203-220 ◽  
Author(s):  
P. Shanmugam

Abstract. The current SeaDAS atmospheric correction algorithm relies on the computation of optical properties of aerosols based on radiative transfer combined with a near-infrared (NIR) correction scheme (originally with assumptions of zero water-leaving radiance for the NIR bands) and several ancillary parameters to remove atmospheric effects in remote sensing of ocean colour. The failure of this algorithm over complex waters has been reported by many recent investigations, and can be attributed to the inadequate NIR correction and constraints for deriving aerosol optical properties whose characteristics are the most difficult to evaluate because they vary rapidly with time and space. The possibility that the aerosol and sun glint contributions can be derived in the whole spectrum of ocean colour solely from a knowledge of the total and Rayleigh-corrected radiances is developed in detail within the framework of a Complex water Atmospheric correction Algorithm Scheme (CAAS) that makes no use of ancillary parameters. The performance of the CAAS algorithm is demonstrated for MODIS/Aqua imageries of optically complex waters and yields physically realistic water-leaving radiance spectra that are not possible with the SeaDAS algorithm. A preliminary comparison with in-situ data for several regional waters (moderately complex to clear waters) shows encouraging results, with absolute errors of the CAAS algorithm closer to those of the SeaDAS algorithm. The impact of the atmospheric correction was also examined on chlorophyll retrievals with a Case 2 water bio-optical algorithm, and it was found that the CAAS algorithm outperformed the SeaDAS algorithm in terms of producing accurate pigment estimates and recovering areas previously flagged out by the later algorithm. These findings suggest that the CAAS algorithm can be used for applications focussing in quantitative assessments of the biological and biogeochemical properties in complex waters, and can easily be extended to other sensors such as OCM-2, MERIS and GOCI.


Sign in / Sign up

Export Citation Format

Share Document