Level set hyperspectral image segmentation using spectral information divergence-based best band selection

Author(s):  
John E. Ball ◽  
Lori Mann Bruce ◽  
Terrance West ◽  
Saurabh Prasad
2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-hang Li ◽  
Xin Tan ◽  
Wei Zhang ◽  
Qing-bin Jiao ◽  
Yu-xing Xu ◽  
...  

This paper focuses on image segmentation, image correction and spatial-spectral dimensional denoising of images in hyperspectral image preprocessing to improve the classification accuracy of hyperspectral images. Firstly, the images were filtered and segmented by using spectral angle and principal component analysis, and the segmented results are intersected and then used to mask the hyperspectral images. Hyperspectral images with a excellent segmentation result was obtained. Secondly, the standard reflectance plates with reflectance of 2 and 98% were used as a priori spectral information for image correction of samples with known true spectral information. The mean square error between the corrected and calibrated spectra is less than 0.0001. Comparing with the black-and-white correction method, the classification model constructed based on this method has higher classification accuracy. Finally, the convolution kernel of the one-dimensional Savitzky-Golay (SG) filter was extended into a two-dimensional convolution kernel to perform joint spatial-spectral dimensional filtering (TSG) on the hyperspectral images. The SG filter (m = 7,n = 3) and TSG filter (m = 3,n = 4) were applied to the hyperspectral image of Pavia University and the quality of the hyperspectral image was evaluated. It was found that the TSG filter retained most of the original features while the noise information of the filtered hyperspectral image was less. The hyperspectral images of sample 1–1 and sample 1–2 were processed by the image segmentation and image correction methods proposed in this paper. Then the classification models based on SG filtering and TSG filtering hyperspectral images were constructed, respectively. The results showed that the TSG filter-based model had higher classification accuracy and the classification accuracy is more than 98%.


2020 ◽  
Vol 12 (13) ◽  
pp. 2154 ◽  
Author(s):  
Ke Wang ◽  
Ligang Cheng ◽  
Bin Yong

Spectral similarity measures can be regarded as potential metrics for kernel functions, and can be used to generate spectral-similarity-based kernels. However, spectral-similarity-based kernels have not received significant attention from researchers. In this paper, we propose two novel spectral-similarity-based kernels based on spectral angle mapper (SAM) and spectral information divergence (SID) combined with the radial basis function (RBF) kernel: Power spectral angle mapper RBF (Power-SAM-RBF) and normalized spectral information divergence-based RBF (Normalized-SID-RBF) kernels. First, we prove these spectral-similarity-based kernels to be Mercer’s kernels. Second, we analyze their efficiency in terms of local and global kernels. Finally, we consider three hyperspectral datasets to analyze the effectiveness of the proposed spectral-similarity-based kernels. Experimental results demonstrate that the Power-SAM-RBF and SAM-RBF kernels can obtain an impressive performance, particularly the Power-SAM-RBF kernel. For example, when the ratio of the training set is 20 % , the kappa coefficient of Power-SAM-RBF kernel (0.8561) is 1.61 % , 1.32 % , and 1.23 % higher than that of the RBF kernel on the Indian Pines, University of Pavia, and Salinas Valley datasets, respectively. We present three conclusions. First, the superiority of the Power-SAM-RBF kernel compared to other kernels is evident. Second, the Power-SAM-RBF kernel can provide an outstanding performance when the similarity between spectral signatures in the same hyperspectral dataset is either extremely high or extremely low. Third, the Power-SAM-RBF kernel provides even greater benefits compared to other commonly used kernels when the sizes of the training sets increase. In future work, multiple kernels combining with the spectral-similarity-based kernel are expected to be provide better hyperspectral classification.


2009 ◽  
Vol 19 (12) ◽  
pp. 3161-3169 ◽  
Author(s):  
Chuan-Jiang HE ◽  
Meng LI ◽  
Yi ZHAN

Sign in / Sign up

Export Citation Format

Share Document