scholarly journals Research and Application of Several Key Techniques in Hyperspectral Image Preprocessing

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-hang Li ◽  
Xin Tan ◽  
Wei Zhang ◽  
Qing-bin Jiao ◽  
Yu-xing Xu ◽  
...  

This paper focuses on image segmentation, image correction and spatial-spectral dimensional denoising of images in hyperspectral image preprocessing to improve the classification accuracy of hyperspectral images. Firstly, the images were filtered and segmented by using spectral angle and principal component analysis, and the segmented results are intersected and then used to mask the hyperspectral images. Hyperspectral images with a excellent segmentation result was obtained. Secondly, the standard reflectance plates with reflectance of 2 and 98% were used as a priori spectral information for image correction of samples with known true spectral information. The mean square error between the corrected and calibrated spectra is less than 0.0001. Comparing with the black-and-white correction method, the classification model constructed based on this method has higher classification accuracy. Finally, the convolution kernel of the one-dimensional Savitzky-Golay (SG) filter was extended into a two-dimensional convolution kernel to perform joint spatial-spectral dimensional filtering (TSG) on the hyperspectral images. The SG filter (m = 7,n = 3) and TSG filter (m = 3,n = 4) were applied to the hyperspectral image of Pavia University and the quality of the hyperspectral image was evaluated. It was found that the TSG filter retained most of the original features while the noise information of the filtered hyperspectral image was less. The hyperspectral images of sample 1–1 and sample 1–2 were processed by the image segmentation and image correction methods proposed in this paper. Then the classification models based on SG filtering and TSG filtering hyperspectral images were constructed, respectively. The results showed that the TSG filter-based model had higher classification accuracy and the classification accuracy is more than 98%.

2021 ◽  
Vol 13 (18) ◽  
pp. 3592
Author(s):  
Yifei Zhao ◽  
Fengqin Yan

Hyperspectral image (HSI) classification is one of the major problems in the field of remote sensing. Particularly, graph-based HSI classification is a promising topic and has received increasing attention in recent years. However, graphs with pixels as nodes generate large size graphs, thus increasing the computational burden. Moreover, satisfactory classification results are often not obtained without considering spatial information in constructing graph. To address these issues, this study proposes an efficient and effective semi-supervised spectral-spatial HSI classification method based on sparse superpixel graph (SSG). In the constructed sparse superpixels graph, each vertex represents a superpixel instead of a pixel, which greatly reduces the size of graph. Meanwhile, both spectral information and spatial structure are considered by using superpixel, local spatial connection and global spectral connection. To verify the effectiveness of the proposed method, three real hyperspectral images, Indian Pines, Pavia University and Salinas, are chosen to test the performance of our proposal. Experimental results show that the proposed method has good classification completion on the three benchmarks. Compared with several competitive superpixel-based HSI classification approaches, the method has the advantages of high classification accuracy (>97.85%) and rapid implementation (<10 s). This clearly favors the application of the proposed method in practice.


Author(s):  
Annalisa Appice ◽  
Angelo Cannarile ◽  
Antonella Falini ◽  
Donato Malerba ◽  
Francesca Mazzia ◽  
...  

AbstractSaliency detection mimics the natural visual attention mechanism that identifies an imagery region to be salient when it attracts visual attention more than the background. This image analysis task covers many important applications in several fields such as military science, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite hundreds of models have been proposed for saliency detection in colour images, there is still a large room for improving saliency detection performances in hyperspectral imaging analysis. In the present study, an ensemble learning methodology for saliency detection in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded through a robust colour-based technique with new saliency information extracted by taking advantage of the abundance of spectral information on multiple hyperspectral images. The experiments performed with the proposed methodology provide encouraging results, also compared to several competitors.


2020 ◽  
Vol 12 (18) ◽  
pp. 2956 ◽  
Author(s):  
Peng Dou ◽  
Chao Zeng

Recently, deep learning has been reported to be an effective method for improving hyperspectral image classification and convolutional neural networks (CNNs) are, in particular, gaining more and more attention in this field. CNNs provide automatic approaches that can learn more abstract features of hyperspectral images from spectral, spatial, or spectral-spatial domains. However, CNN applications are focused on learning features directly from image data—while the intrinsic relations between original features, which may provide more information for classification, are not fully considered. In order to make full use of the relations between hyperspectral features and to explore more objective features for improving classification accuracy, we proposed feature relations map learning (FRML) in this paper. FRML can automatically enhance the separability of different objects in an image, using a segmented feature relations map (SFRM) that reflects the relations between spectral features through a normalized difference index (NDI), and it can then learn new features from SFRM using a CNN-based feature extractor. Finally, based on these features, a classifier was designed for the classification. With FRML, our experimental results from four popular hyperspectral datasets indicate that the proposed method can achieve more representative and objective features to improve classification accuracy, outperforming classifications using the comparative methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Shao-lei Zhang ◽  
Guang-yuan Fu ◽  
Hong-qiao Wang ◽  
Yu-qing Zhao

In this paper, we propose a novel hyperspectral image superresolution method based on superpixel spectral unmixing using a coupled encoder-decoder network. The hyperspectral image and multispectral images are fused to generate high-resolution hyperspectral images through the spectral unmixing framework with low-rank constraint. Specifically, the endmember and abundance information is extracted via a coupled encoder-decoder network integrating the priori for unmixing. The coupled network consists of two encoders and one shared decoder, where spectral information is preserved through the encoder. The multispectral image is clustered into superpixels to explore self-similarity, and then, the superpixels are unmixed to obtain an abundance matrix. By imposing a low-rank constraint on the abundance matrix, we further improve the superresolution performance. Experiments on the CAVE and Harvard datasets indicate that our superresolution method outperforms the other compared methods in terms of quantitative evaluation and visual quality.


2021 ◽  
Vol 275 ◽  
pp. 03018
Author(s):  
Beixun Qi

In this paper, we extract spectral image features from a hyperspectral image database, and use big data technology to classify spectra hierarchically, to achieve the purpose of efficient database matching. In this paper, the LDMGI (local discriminant models and global integration) algorithm and big data branch definition algorithm are used to classify the features of the hyperspectral image and save the extracted feature data. Hierarchical color similarity is used to match the spectrum. By clustering colors, spectral information can be stored as chain nodes in the database, which can improve the efficiency of hyperspectral image database queries. The experimental results show that the hyperspectral images of color hyperspectral images are highly consistent and indistinguishable, and need to be processed by the machine learning algorithm. Different pretreatment methods have little influence on the identification accuracy of the LDMGI model, and the combined pretreatment has better identification accuracy. The average classification accuracy of the LDMGI model training set is 95.62%, the average classification accuracy of cross-validation is 94.36%, and the average classification accuracy of the test set is 89.62%. Therefore, using big data analysis technology to process spectral features in hyperspectral image databases can improve query efficiency and more accurate query results.


Author(s):  
S. Lyu ◽  
J. Mao ◽  
M. Hou

Abstract. Due to the influence of natural and human factors, the linear features in the murals are partially blurred, which brings great challenges to the digital preservation and virtual restoration of cultural heritage. Taking the advantages of non-invasive measurement as well as the rich image and spectral information of hyperspectral technology, we proposed a linear feature enhancement method by combining semi-supervised superpixel segmentation with block dimension reduction. The main research work includes: (1) The true color composite image was segmented to obtain the label data by using the local spatial information of the superpixel image and the global feature information extracted by fuzzy c-means (FCM) clustering.(2) According to the label data, the preprocessed hyperspectral data were divided into homogeneous regions, whose dimensionality was reduced by principal component analysis (PCA) and kernel principal component analysis (KPCA). (3) The principal component images with the largest gradient after dimensionality reduction were respectively selected and normalized. The optimal principal component images normalized by the block PCA and block KPCA dimensionality reduction algorithms are superimposed to produce the linear feature enhancement images of murals. The hyperspectral images of some murals in Qutan Temple, Qinghai Province, China were used to verify the method. The results show that the spatial information and the spectral information of different pattern areas in the hyperspectral image can be fully used by combining the superpixel FCM image segmentation algorithm with the dimensionality reduction algorithm. of. It can highlight the linear information in the hyperspectral images of fades murals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiqi Huang ◽  
Ying Lu ◽  
Wenqing Wang ◽  
Ke Sun

AbstractTo solve the problem that the traditional hyperspectral image classification method cannot effectively distinguish the boundary of objects with a single scale feature, which leads to low classification accuracy, this paper introduces the idea of guided filtering into hyperspectral image classification, and then proposes a multi-scale guided feature extraction and classification (MGFEC) algorithm for hyperspectral images. Firstly, the principal component analysis theory is used to reduce the dimension of hyperspectral image data. Then, guided filtering algorithm is used to achieve multi-scale spatial structure extraction of hyperspectral image by setting different sizes of filtering windows, so as to retain more edge details. Finally, the extracted multi-scale features are input into the support vector machine classifier for classification. Several practical hyperspectral image datasets were used to verify the experiment, and compared with other spectral feature extraction algorithms. The experimental results show that the multi-scale features extracted by the MGFEC algorithm proposed in this paper are more accurate than those extracted by only using spectral information, which leads to the improvement of the final classification accuracy. This fully shows that the proposed method is not only effective, but also suitable for processing different hyperspectral image data.


2020 ◽  
Vol 12 (6) ◽  
pp. 923 ◽  
Author(s):  
Kuiliang Gao ◽  
Bing Liu ◽  
Xuchu Yu ◽  
Jinchun Qin ◽  
Pengqiang Zhang ◽  
...  

Deep learning has achieved great success in hyperspectral image classification. However, when processing new hyperspectral images, the existing deep learning models must be retrained from scratch with sufficient samples, which is inefficient and undesirable in practical tasks. This paper aims to explore how to accurately classify new hyperspectral images with only a few labeled samples, i.e., the hyperspectral images few-shot classification. Specifically, we design a new deep classification model based on relational network and train it with the idea of meta-learning. Firstly, the feature learning module and the relation learning module of the model can make full use of the spatial–spectral information in hyperspectral images and carry out relation learning by comparing the similarity between samples. Secondly, the task-based learning strategy can enable the model to continuously enhance its ability to learn how to learn with a large number of tasks randomly generated from different data sets. Benefitting from the above two points, the proposed method has excellent generalization ability and can obtain satisfactory classification results with only a few labeled samples. In order to verify the performance of the proposed method, experiments were carried out on three public data sets. The results indicate that the proposed method can achieve better classification results than the traditional semisupervised support vector machine and semisupervised deep learning models.


2021 ◽  
Vol 13 (12) ◽  
pp. 2268
Author(s):  
Hang Gong ◽  
Qiuxia Li ◽  
Chunlai Li ◽  
Haishan Dai ◽  
Zhiping He ◽  
...  

Hyperspectral images are widely used for classification due to its rich spectral information along with spatial information. To process the high dimensionality and high nonlinearity of hyperspectral images, deep learning methods based on convolutional neural network (CNN) are widely used in hyperspectral classification applications. However, most CNN structures are stacked vertically in addition to using a onefold size of convolutional kernels or pooling layers, which cannot fully mine the multiscale information on the hyperspectral images. When such networks meet the practical challenge of a limited labeled hyperspectral image dataset—i.e., “small sample problem”—the classification accuracy and generalization ability would be limited. In this paper, to tackle the small sample problem, we apply the semantic segmentation function to the pixel-level hyperspectral classification due to their comparability. A lightweight, multiscale squeeze-and-excitation pyramid pooling network (MSPN) is proposed. It consists of a multiscale 3D CNN module, a squeezing and excitation module, and a pyramid pooling module with 2D CNN. Such a hybrid 2D-3D-CNN MSPN framework can learn and fuse deeper hierarchical spatial–spectral features with fewer training samples. The proposed MSPN was tested on three publicly available hyperspectral classification datasets: Indian Pine, Salinas, and Pavia University. Using 5%, 0.5%, and 0.5% training samples of the three datasets, the classification accuracies of the MSPN were 96.09%, 97%, and 96.56%, respectively. In addition, we also selected the latest dataset with higher spatial resolution, named WHU-Hi-LongKou, as the challenge object. Using only 0.1% of the training samples, we could achieve a 97.31% classification accuracy, which is far superior to the state-of-the-art hyperspectral classification methods.


Sign in / Sign up

Export Citation Format

Share Document