Extracting seismic anomalies based on STD threshold method using outgoing Longwave Radiation data

Author(s):  
Feng Jing ◽  
Xuhui Shen ◽  
Chunli Kang ◽  
Qingyan Meng ◽  
Yang Chen ◽  
...  
2010 ◽  
Vol 10 (10) ◽  
pp. 2169-2178 ◽  
Author(s):  
P. Xiong ◽  
X. H. Shen ◽  
Y. X. Bi ◽  
C. L. Kang ◽  
L. Z. Chen ◽  
...  

Abstract. The paper presents an analysis by using the methods of Eddy field calculation mean and wavelet maxima to detect seismic anomalies within the outgoing longwave radiation (OLR) data based on time and space. The distinguishing feature of the method of Eddy field calculation mean is that we can calculate "the total sum of the difference value" of "the measured value" between adjacent points, which could highlight the singularity within data. The identified singularities are further validated by wavelet maxima, which using wavelet transformations as data mining tools by computing the maxima that can be used to identify obvious anomalies within OLR data. The two methods has been applied to carry out a comparative analysis of OLR data associated with the earthquake recently occurred in Haiti on 12 January 2010. Combining with the tectonic explanation of spatial and temporal continuity of the abnormal phenomena, the analyzed results have indicated a number of singularities associated with the possible seismic anomalies of the earthquake and from the comparative experiments and analyses by using the two methods, which follow the same time and space, we conclude that the singularities observed from 19 to 24 December 2009 could be the earthquake precursor of Haiti earthquake.


MAUSAM ◽  
2021 ◽  
Vol 43 (3) ◽  
pp. 301-306
Author(s):  
P. N. MARAJAN ◽  
R. M. KHALADKAR ◽  
G. R. CRINTRALU

An assessment of Outgoing longwave radiation data obtained from polar orbiting and geostationary satellites is made to see which one, is more convenient and useful for the construction of divergence of the wind field for regional models. The availability of OLR data from TIROS-N (polar orbiting) and GOES-IO (geostationary) satellites during 1979 made it possible to assess and explore a statistical relationship among the OLR data and divergence of the wind field at 850 and 2°9 hPa. constructed from the analysls of the Global Experiment data sets. This study reveals a very strong relationship between these fields in the region of deep convective activity and this relationship has also been found to be stronger for geostationary satellite than polar orbiting satellite. The use or this relationship especially over data-sparse tropical oceanic regions for NWP models is suggested.  


2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.


Sign in / Sign up

Export Citation Format

Share Document