scholarly journals Estimating the Earth’s Outgoing Longwave Radiation Measured from a Moon-Based Platform

2021 ◽  
Vol 13 (11) ◽  
pp. 2201
Author(s):  
Hanlin Ye ◽  
Huadong Guo ◽  
Guang Liu ◽  
Jinsong Ping ◽  
Lu Zhang ◽  
...  

Moon-based Earth observations have attracted significant attention across many large-scale phenomena. As the only natural satellite of the Earth, and having a stable lunar surface as well as a particular orbit, Moon-based Earth observations allow the Earth to be viewed as a single point. Furthermore, in contrast with artificial satellites, the varied inclination of Moon-based observations can improve angular samplings of specific locations on Earth. However, the potential for estimating the global outgoing longwave radiation (OLR) from the Earth with such a platform has not yet been fully explored. To evaluate the possibility of calculating OLR using specific Earth observation geometry, we constructed a model to estimate Moon-based OLR measurements and investigated the potential of a Moon-based platform to acquire the necessary data to estimate global mean OLR. The primary method of our study is the discretization of the observational scope into various elements and the consequent integration of the OLR of all elements. Our results indicate that a Moon-based platform is suitable for global sampling related to the calculation of global mean OLR. By separating the geometric and anisotropic factors from the measurement calculations, we ensured that measured values include the effects of the Moon-based Earth observation geometry and the anisotropy of the scenes in the observational scope. Although our results indicate that higher measured values can be achieved if the platform is located near the center of the lunar disk, a maximum difference between locations of approximately 9 × 10−4 W m−2 indicates that the effect of location is too small to remarkably improve observation performance of the platform. In conclusion, our analysis demonstrates that a Moon-based platform has the potential to provide continuous, adequate, and long-term data for estimating global mean OLR.

2007 ◽  
Vol 24 (12) ◽  
pp. 2029-2047 ◽  
Author(s):  
Hai-Tien Lee ◽  
Arnold Gruber ◽  
Robert G. Ellingson ◽  
Istvan Laszlo

Abstract The Advanced Very High Resolution Radiometer (AVHRR) outgoing longwave radiation (OLR) product, which NOAA has been operationally generating since 1979, is a very long data record that has been used in many applications, yet past studies have shown its limitations and several algorithm-related deficiencies. Ellingson et al. have developed the multispectral algorithm that largely improved the accuracy of the narrowband-estimated OLR as well as eliminated the problems in AVHRR. NOAA has been generating High Resolution Infrared Radiation Sounder (HIRS) OLR operationally since September 1998. In recognition of the need for a continuous and long OLR data record that would be consistent with the earth radiation budget broadband measurements in the National Polar-orbiting Operational Environmental Satellite System (NPOESS) era, and to provide a climate data record for global change studies, a vigorous reprocessing of the HIRS radiance for OLR derivation is necessary. This paper describes the development of the new HIRS OLR climate dataset. The HIRS level 1b data from the entire Television and Infrared Observation Satellite N-series (TIROS-N) satellites have been assembled. A new radiance calibration procedure was applied to obtain more accurate and consistent HIRS radiance measurements. The regression coefficients of the HIRS OLR algorithm for all satellites were rederived from calculations using an improved radiative transfer model. Intersatellite calibrations were performed to remove possible discontinuity in the HIRS OLR product from different satellites. A set of global monthly diurnal models was constructed consistent with the HIRS OLR retrievals to reduce the temporal sampling errors and to alleviate an orbital-drift-induced artificial trend. These steps significantly improved the accuracy, continuity, and uniformity of the HIRS monthly mean OLR time series. As a result, the HIRS OLR shows a comparable stability as in the Earth Radiation Budget Satellite (ERBS) nonscanner OLR measurements. HIRS OLR has superb agreement with the broadband observations from Earth Radiation Budget Experiment (ERBE) and Clouds and the Earth’s Radiant Energy System (CERES) in the ENSO-monitoring regions. It shows compatible ENSO-monitoring capability with the AVHRR OLR. Globally, HIRS OLR agrees with CERES with an accuracy to within 2 W m−2 and a precision of about 4 W m−2. The correlation coefficient between HIRS and CERES global monthly mean is 0.997. Regionally, HIRS OLR agrees with CERES to within 3 W m−2 with precisions better than 3 W m−2 in most places. HIRS OLR could be used for constructing climatology for applications that plan to use NPOESS ERBS and previously used AVHRR OLR observations. The HIRS monthly mean OLR data have high accuracy and precision with respect to the broadband observations of ERBE and CERES. It can be used as an independent validation data source. The uniformity and continuity of HIRS OLR time series suggest that it could be used as a reliable transfer reference for the discontinuous broadband measurements from ERBE, CERES, and ERBS.


2016 ◽  
Vol 29 (13) ◽  
pp. 4939-4947 ◽  
Author(s):  
R. J. Bantges ◽  
H. E. Brindley ◽  
X. H. Chen ◽  
X. L. Huang ◽  
J. E. Harries ◽  
...  

Abstract Differences between Earth’s global mean all-sky outgoing longwave radiation spectrum as observed in 1970 [Interferometric Infrared Spectrometer (IRIS)], 1997 [Interferometric Monitor for Greenhouse Gases (IMG)], and 2012 [Infrared Atmospheric Sounding Instrument (IASI)] are presented. These differences are evaluated to determine whether these are robust signals of multidecadal radiative forcing and hence whether there is the potential for evaluating feedback-type responses. IASI–IRIS differences range from +2 K in the atmospheric window (800–1000 cm−1) to −5.5 K in the 1304 cm−1 CH4 band center. Corresponding IASI–IMG differences are much smaller, at 0.2 and −0.8 K, respectively. More noticeably, IASI–IRIS differences show a distinct step change across the 1042 cm−1 O3 band that is not seen in IASI–IMG comparisons. This step change is a consequence of a difference in behavior when moving from colder to warmer scenes in the IRIS data compared to IASI and IMG. Matched simulations for the relevant periods using ERA reanalyses mimic the spectral behavior shown by IASI and IMG rather than by IRIS. These findings suggest that uncertainties in the spectral response of IRIS preclude the use of these data for quantitative assessments of forcing and feedback processes.


2003 ◽  
Vol 60 (13) ◽  
pp. 1529-1542 ◽  
Author(s):  
G. Louis Smith ◽  
David A. Rutan

Abstract The diurnal cycle of outgoing longwave radiation (OLR) from the earth is analyzed by decomposing satellite observations into a set of empirical orthogonal functions (EOFs). The observations are from the Earth Radiation Budget Experiment (ERBE) scanning radiometer aboard the Earth Radiation Budget Satellite, which had a precessing orbit with 57° inclination. The diurnal cycles of land and ocean differ considerably. The first EOF for land accounts for 73% to 85% of the variance, whereas the first EOF for ocean accounts for only 16% to 20% of the variance, depending on season. The diurnal cycle for land is surprisingly symmetric about local noon for the first EOF, which is approximately a half-sine during day and flat at night. The second EOF describes lead–lag effects due to surface heating and cloud formation. For the ocean, the first EOF and second EOF are similar to that of land, except for spring, when the first ocean EOF is a semidiurnal cycle and the second ocean EOF is the half-sine. The first EOF for land has a daytime peak of about 50 W m−2, whereas the first ocean EOF peaks at about 25 W m−2. The geographical and seasonal patterns of OLR diurnal cycle provide insights into the interaction of radiation with the atmosphere and surface and are useful for validating and upgrading circulation models.


2009 ◽  
Vol 22 (8) ◽  
pp. 1934-1943 ◽  
Author(s):  
David W. J. Thompson ◽  
Susan Solomon

Abstract The long-term, global-mean cooling of the lower stratosphere stems from two downward steps in temperature, both of which are coincident with the cessation of transient warming after the volcanic eruptions of El Chichón and Mount Pinatubo. Previous attribution studies reveal that the long-term cooling is linked to ozone trends, and modeling studies driven by a range of known forcings suggest that the steps reflect the superposition of the long-term cooling with transient variability in upwelling longwave radiation from the troposphere. However, the long-term cooling of the lower stratosphere is evident at all latitudes despite the fact that chemical ozone losses are thought to be greatest at middle and polar latitudes. Further, the ozone concentrations used in such studies are based on either 1) smooth mathematical functions fit to sparsely sampled observations that are unavailable during postvolcanic periods or 2) calculations by a coupled chemistry–climate model. Here the authors provide observational analyses that yield new insight into three key aspects of recent stratospheric climate change. First, evidence is provided that shows the unusual steplike behavior of global-mean stratospheric temperatures is dependent not only upon the trend but also on the temporal variability in global-mean ozone immediately following volcanic eruptions. Second, the authors argue that the warming/cooling pattern in global-mean temperatures following major volcanic eruptions is consistent with the competing radiative and chemical effects of volcanic eruptions on stratospheric temperature and ozone. Third, it is revealed that the contrasting latitudinal structures of recent stratospheric temperature and ozone trends are consistent with large-scale increases in the stratospheric overturning Brewer–Dobson circulation.


2011 ◽  
Vol 139 (3) ◽  
pp. 885-894 ◽  
Author(s):  
Jianyun Gao ◽  
Tim Li

Abstract The statistical feature of occurrence of multiple tropical cyclone (MTC) events in the western North Pacific (WNP) is examined during summer (June–September) for the period of 1979–2006. The number of MTC events ranged from one to eight per year, experiencing a marked interannual variation. The spatial distance between the TCs associated with MTC events is mostly less than 3000 km, which accounts for 73% of total samples. The longest active phase of an MTC event lasts for nine days, and about 80% of the MTC events last for five days or less. A composite analysis of active and inactive MTC phases reveals that positive low-level (negative upper-level) vorticity anomalies and enhanced convection and midtropospheric relative humidity are the favorable large-scale conditions for MTC genesis. About 77% of the MTC events occurred in the region where either the atmospheric intraseasonal (25–70 day) oscillation (ISO) or biweekly (10–20 day) oscillation (BWO) is in a wet phase. The overall occurrence of the MTC events is greatly regulated by the combined large-scale impact of BWO, ISO, and the lower-frequency (90 days or longer) oscillation. On the interannual time scale, the MTC frequency is closely related to the seasonal mean anomalies of 850-hPa vorticity, outgoing longwave radiation (OLR), and 500-hPa humidity fields. The combined ISO and BWO activity is greatly strengthened (weakened) in the WNP region during the MTC active (inactive) years.


2018 ◽  
Vol 10 (10) ◽  
pp. 1539 ◽  
Author(s):  
Steven Dewitte ◽  
Nicolas Clerbaux

The Earth Radiation Budget (ERB) at the top of the atmosphere quantifies how the earth gains energy from the sun and loses energy to space. Its monitoring is of fundamental importance for understanding ongoing climate change. In this paper, decadal changes of the Outgoing Longwave Radiation (OLR) as measured by the Clouds and Earth’s Radiant Energy System from 2000 to 2018, the Earth Radiation Budget Experiment from 1985 to 1998, and the High-resolution Infrared Radiation Sounder from 1985 to 2018 are analysed. The OLR has been rising since 1985, and correlates well with the rising global temperature. An observational estimate of the derivative of the OLR with respect to temperature of 2.93 +/− 0.3 W/m 2 K is obtained. The regional patterns of the observed OLR change from 1985–2000 to 2001–2017 show a warming pattern in the Northern Hemisphere in particular in the Arctic, as well as tropical cloudiness changes related to a strengthening of La Niña.


2019 ◽  
Vol 11 (23) ◽  
pp. 2805 ◽  
Author(s):  
Yue Sui ◽  
Huadong Guo ◽  
Guang Liu ◽  
Yuanzhen Ren

The Antarctic and Arctic have always been critical areas of earth science research and are sensitive to global climate change. Global climate change exhibits diversity characteristics on both temporal and spatial scales. Since the Moon-based earth observation platform could provide large-scale, multi-angle, and long-term measurements complementary to the satellite-based Earth observation data, it is necessary to study the observation characteristics of this new platform. With deepening understanding of Moon-based observations, we have seen its good observation ability in the middle and low latitudes of the Earth’s surface, but for polar regions, we need to further study the observation characteristics of this platform. Based on the above objectives, we used the Moon-based Earth observation geometric model to quantify the geometric relationship between the Sun, Moon, and Earth. Assuming the sensor is at the center of the nearside of the Moon, the coverage characteristics of the earth feature points are counted. The observation intervals, access frequency, and the angle information of each point during 100 years were obtained, and the variation rule was analyzed. The research showed that the lunar platform could carry out ideal observations for the polar regions. For the North and South poles, a continuous observation duration of 14.5 days could be obtained, and as the latitude decreased, the duration time was reduced to less than one day at the latitude of 65° in each hemisphere. The dominant observation time of the North Pole is concentrated from mid-March to mid-September, and for the South Pole, it is the rest of the year, and as the latitude decreases, it extends outward from both sides. The annual coverage time and frequency will change with the relationship between the Moon and the Earth. This study also proves that the Moon-based observation has multi-angle observation advantages for the Arctic and the Antarctic areas, which can help better understand large-scale geoscientific phenomena. The above findings indicate that the Moon-based observation can be applied as a new type of remote sensing technology to the observation field of the Earth’s polar regions.


Nature ◽  
2001 ◽  
Vol 410 (6826) ◽  
pp. 355-357 ◽  
Author(s):  
John E. Harries ◽  
Helen E. Brindley ◽  
Pretty J. Sagoo ◽  
Richard J. Bantges

Sign in / Sign up

Export Citation Format

Share Document