A preliminary analysis of cloud classification results using Ka-band polarimetric radar signatures

Author(s):  
Abhishek Kodilkar ◽  
Arvind Agarwal ◽  
Kalapureddy MCR ◽  
J.S Pillai

2021 ◽  
Author(s):  
Christopher R. Williams ◽  
Karen L. Johnson ◽  
Scott E. Giangrande ◽  
Joseph C. Hardin ◽  
Ruşen Öktem ◽  
...  

Abstract. This study presents a method to identify and distinguish insects, clouds, and precipitation in 35 GHz (Ka-band) vertically pointing polarimetric radar Doppler velocity power spectra and then produce masks indicating the occurrence of hydrometeors (i.e., clouds or precipitation) and insects at each range gate. The polarimetric radar used in this study transmits a linear polarized wave and receives signals in collinear (CoPol) and cross-linear (XPol) polarized channels. The insect-hydrometeor discrimination method uses CoPol and XPol spectral information in two separate algorithms with their spectral results merged and then filtered into single value products at each range gate. The first algorithm discriminates between insects and clouds in the CoPol Doppler velocity power spectra based on the spectra texture, or spectra roughness, which varies due to the scattering characteristics of insects versus cloud particles. The second algorithm distinguishes insects from raindrops and ice particles by exploiting the larger Doppler velocity spectra linear depolarization ratio (LDR) produced by asymmetric insects. Since XPol power return is always less than CoPol power return for the same target (i.e., insect or hydrometeor), fewer insects and hydrometeors are detected in the LDR algorithm than the CoPol algorithm, which drives this need for a CoPol based algorithm. After performing both CoPol and LDR detection algorithms, regions of insect and hydrometeor scattering from both algorithms are combined in the Doppler velocity spectra domain and then filtered to produce a binary hydrometeor mask indicating the occurrence of cloud, raindrops, or ice particles at each range gate. Comparison with a collocated ceilometer indicates that hydrometeor mask column bottoms are within +/-100 meters of simultaneous ceilometer cloud base heights. Forty-seven (47) summer-time days were processed with the insect-hydrometeor discrimination method using U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program Ka-band zenith pointing radar observations in northern Oklahoma (USA). All datasets and images are available on public repositories.



2014 ◽  
Vol 50 (3) ◽  
pp. 2164-2175 ◽  
Author(s):  
James Park ◽  
Joel Johnson ◽  
Ninoslav Majurec ◽  
Mark Frankford ◽  
Kyle Stewart ◽  
...  


2019 ◽  
Vol 36 (8) ◽  
pp. 793-803 ◽  
Author(s):  
Juan Huo ◽  
Yongheng Bi ◽  
Daren Lü ◽  
Shu Duan




1991 ◽  
Vol 138 (2) ◽  
pp. 109 ◽  
Author(s):  
V.N. Bringi ◽  
V. Chandrasekar ◽  
P. Meischner ◽  
J. Hubbert ◽  
Y. Golestani




2021 ◽  
Author(s):  
Gregor Möller ◽  
Florian Ewald ◽  
Silke Groß ◽  
Martin Hagen ◽  
Christoph Knote ◽  
...  

<p>The representation of microphysical processes in numerical weather prediction models remains a main source of uncertainty. To tackle this issue, we exploit the synergy of two polarimetric radars to provide novel observations of model microphysics parameterizations. In the framework of the IcePolCKa project (Investigation of the initiation of Convection and the Evolution of Precipitationusing simulatiOns and poLarimetric radar observations at C- and Ka-band) we use these observations to study the initiation of convection as well as the evolution of precipitation. At a distance of 23 km between the C-band PoldiRad radar of the German Aerospace Center (DLR) in Oberpfaffenhofen and the Ka-band Mira35 radar of the Ludwig-Maximilians-University of Munich (LMU), the two radar systems allow targeted observations and coordinated scan patterns. A second C-band radar located in Isen and operated by the German Weather Service (DWD) provides area coverage and larger spatial context. By tracking the precipitation movement, the dual-frequency and polarimetric radar observations allow us to characterize important microphysical parameters, such as predominant hydrometeor class or conversion rates between these classes over a significant fraction of the life time of a convective cell. A WRF (Weather Research and Forecasting Model) simulation setup has been established including a Europe-, a nested Germany- and a nested Munich- domain. The Munich domain covers the overlap area of our two radars Mira35 and Poldirad with a horizontal resolution of 400 m. For each of our measurement days we conduct a WRF hindcast simulation with differing microphysics schemes. To allow for a comparison between model world and observation space, we make use of the radar forward-simulator CR-SIM. The measurements so far include 240 coordinated scans of 36 different convective cells over 10 measurement days between end of April and mid July 2019 as well as 40 days of general dual-frequency volume scans between mid April and early October 2020. The performance of each microphysics scheme is analyzed through a comparison to our radar measurements on a statistical basis over all our measurements.</p>





Sign in / Sign up

Export Citation Format

Share Document