melting level
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Andrew DeLaFrance ◽  
Lynn McMurdie ◽  
Angela Rowe

AbstractOver mountainous terrain, windward enhancement of stratiform precipitation results from a combination of warm-rain and ice-phase processes. In this study, ice-phase precipitation processes are investigated within frontal systems during the Olympic Mountains Experiment (OLYMPEX). An enhanced layer of radar reflectivity (ZH) above the melting level bright band (i.e., a secondary ZH maximum) is observed over both the windward slopes of the Olympic Mountains and the upstream ocean, with a higher frequency of occurrence and higher ZH values over the windward slopes indicating an orographic enhancement of ice-phase precipitation processes. Aircraft-based in situ observations are evaluated for the 01-02 and 03 December 2015 orographically-enhanced precipitation events. Above the secondary ZH maximum, the hydrometeors are primarily horizontally oriented dendritic and branched crystals. Within the secondary ZH maximum, there are high concentrations of large (> ~2 mm diameter) dendrites, plates, and aggregates thereof, with a significant degree of riming. In both events, aggregation and riming appear to be enhanced within a turbulent layer near sheared flow at the top of a low-level jet impinging on the terrain and forced to rise above the melting level. Based on windward ground sites at low-, mid-, and high-elevations, secondary ZH maxima periods during all of OLYMPEX are associated with increased rain rates and larger mass-weighted mean drop diameters compared to periods without a secondary ZH maximum. This result suggests that precipitation originating from secondary ZH maxima layers may contribute to enhanced windward precipitation accumulations through the formation of large, dense particles that accelerate fallout.


2021 ◽  
Vol 14 (4) ◽  
pp. 2873-2890
Author(s):  
Daniel Sanchez-Rivas ◽  
Miguel A. Rico-Ramirez

Abstract. Accurate estimation of the melting level (ML) is essential in radar rainfall estimation to mitigate the bright band enhancement, classify hydrometeors, correct for rain attenuation and calibrate radar measurements. This paper presents a novel and robust ML-detection algorithm based on either vertical profiles (VPs) or quasi-vertical profiles (QVPs) built from operational polarimetric weather radar scans. The algorithm depends only on data collected by the radar itself, and it is based on the combination of several polarimetric radar measurements to generate an enhanced profile with strong gradients related to the melting layer. The algorithm is applied to 1 year of rainfall events that occurred over southeast England, and the results were validated using radiosonde data. After evaluating all possible combinations of polarimetric radar measurements, the algorithm achieves the best ML detection when combining VPs of ZH, ρHV and the gradient of the velocity (gradV), whereas, for QVPs, combining profiles of ZH, ρHV and ZDR produces the best results, regardless of the type of rain event. The root mean square error in the ML detection compared to radiosonde data is ∼200 m when using VPs and ∼250 m when using QVPs.


Author(s):  
Milind Sharma ◽  
Robin L. Tanamachi ◽  
Eric C. Bruning ◽  
Kristin M. Calhoun

AbstractWe demonstrate the utility of transient polarimetric signatures (ZDR and KDP columns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in the ZDR column region was ten times smaller than elsewhere in the storm. On an average, five times more flash initiations occurred within ZDR column regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume of ZDR and KDP columns. Variability in lightning flash rates is best explained by the fluctuations in ZDR column volume with a Spearman’s rank correlation coefficient value of 0.72. Highest flash rates occur in conjunction with deepest ZDR columns (up to 5 km above environmental melting level) and largest volumes of ZDR columns extending up to the -20° level (3 km above the melting level). Reduced flash rates towards the end of analysis are indicative of weaker updrafts manifested as low ZDR column volumes at and above the -10°C level. These findings are consistent with recent studies linking lightning to the interplay between storm dynamics, kinematics, thermodynamics, and precipitation microphysics.


2020 ◽  
Vol 77 (10) ◽  
pp. 3461-3477
Author(s):  
Rebecca D. Adams-Selin

AbstractThe sensitivity of low-frequency gravity waves generated during the development and mature stages of an MCS to variations in the characteristics of the rimed ice parameterization were tested through idealized numerical simulations over a range of environment shears and instabilities. Latent cooling in the simulations with less dense, graupel-like rimed ice was more concentrated aloft near the melting level, while cooling in simulations with denser, hail-like rimed ice extended from the melting level to the surface. However, the cooling profiles still had significant internal variability across different environments and over each simulation’s duration. Initial wave production during the MCS developing stage was fairly similar in the hail and graupel simulations. During the mature stages, graupel simulations showed stronger perturbations in CAPE due to the cooling and associated wave vertical motion being farther aloft; hail simulations showed stronger perturbations in LFC due to cooling and wave vertical motion being concentrated at lower levels. The differences in the cooling profiles were not uniform enough to produce consistently different higher-order wave modes. However, the initiation of discrete cells ahead of the convective line was found to be highly sensitive to the nature of the prior destabilizing wave. Individual events of discrete propagation were suppressed in some of the graupel simulations due to the higher location of both peak cooling and vertical wave motion. Such results underscore the need to fully characterize MCS microphysical heating profiles and their low-frequency gravity waves to understand their structure and development.


2019 ◽  
Vol 147 (9) ◽  
pp. 3205-3222 ◽  
Author(s):  
Holly M. Mallinson ◽  
Sonia G. Lasher-Trapp

Abstract Downdrafts extending from convective clouds can produce cold pools that propagate outward, sometimes initiating new convection along their leading edges. Models operating at scales requiring convective parameterizations usually lack representation of this detail, and thus fail to predict this convective regeneration and longer episodes of convective activity. Developing such parameterizations requires an improved understanding of the physical drivers of cold pools, and detailed studies of the roles of all the contributing microphysical processes have been lacking. This study utilizes a set of 12 simulations conducted within a single convective environment, but with variability in the microphysical fields produced by varying parameters influencing warm-rain or ice processes. Time-integrated microphysical budgets quantify the contribution of each hydrometeor type to the total latent cooling occurring in the downdrafts that form and sustain the cold pool. The timing of the onset of the cold pool is earlier in cases with a stronger warm rain process, but both graupel and rain were equally as likely to be the dominant hydrometeor in the downdraft first forming the cold pool. Graupel sublimation is the dominant term in sustaining the cold pool in all simulations, but the evaporation of rain has the strongest correlation to the cold pool expansion rate, depth, and intensity. Reconciling the current results with past studies elucidates the importance of considering: graupel sublimation, the latent cooling only in downdrafts contributing to the cold pool, and latent cooling in those downdrafts at altitudes that may be significantly higher than the melting level.


2019 ◽  
Vol 12 (6) ◽  
pp. 2979-3000 ◽  
Author(s):  
Ann M. Fridlind ◽  
Marcus van Lier-Walqui ◽  
Scott Collis ◽  
Scott E. Giangrande ◽  
Robert C. Jackson ◽  
...  

Abstract. To probe the potential value of a radar-driven field campaign to constrain simulation of isolated convection subject to a strong aerosol perturbation, convective cells observed by the operational KHGX weather radar in the vicinity of Houston, Texas, are examined individually and statistically. Cells observed in a single case study of onshore flow conditions during July 2013 are first examined and compared with cells in a regional model simulation. Observed and simulated cells are objectively identified and tracked from observed or calculated positive specific differential phase (KDP) above the melting level, which is related to the presence of supercooled liquid water. Several observed and simulated cells are subjectively selected for further examination. Below the melting level, we compare sequential cross sections of retrieved and simulated raindrop size distribution parameters. Above the melting level, we examine time series of KDP and radar differential reflectivity (ZDR) statistics from observations and calculated from simulated supercooled rain properties, alongside simulated vertical wind and supercooled rain mixing ratio statistics. Results indicate that the operational weather radar measurements offer multiple constraints on the properties of simulated convective cells, with substantial value added from derived KDP and retrieved rain properties. The value of collocated three-dimensional lightning mapping array measurements, which are relatively rare in the continental US, supports the choice of Houston as a suitable location for future field studies to improve the simulation and understanding of convective updraft physics. However, rapid evolution of cells between routine volume scans motivates consideration of adaptive scan strategies or radar imaging technologies to amend operational weather radar capabilities. A 3-year climatology of isolated cell tracks, prepared using a more efficient algorithm, yields additional relevant information. Isolated cells are found within the KHGX domain on roughly 40 % of days year-round, with greatest concentration in the northwest quadrant, but roughly 5-fold more cells occur during June through September. During this enhanced occurrence period, the cells initiate following a strong diurnal cycle that peaks in the early afternoon, typically follow a south-to-north flow, and dissipate within 1 h, consistent with the case study examples. Statistics indicate that ∼ 150 isolated cells initiate and dissipate within 70 km of the KHGX radar during the enhanced occurrence period annually, and roughly 10 times as many within 200 km, suitable for multi-instrument Lagrangian observation strategies. In addition to ancillary meteorological and aerosol measurements, robust vertical wind speed retrievals would add substantial value to a radar-driven field campaign.


2019 ◽  
Author(s):  
Ann M. Fridlind ◽  
Marcus van Lier-Walqui ◽  
Scott Collis ◽  
Scott E. Giangrande ◽  
Robert C. Jackson ◽  
...  

Abstract. To probe the potential value of a radar-driven field campaign to constrain simulation of isolated convection subject to a strong aerosol perturbation, convective cells observed by the operational KHGX weather radar in the vicinity of Houston, Texas, are examined individually and statistically. Cells observed in a single case study of onshore flow conditions during July 2013 are first examined and compared with cells in a regional model simulation. Observed and simulated cells are objectively identified and tracked from observed or calculated positive specific differential phase (KDP) above the melting level, which is related to the presence of supercooled liquid water. Several observed and simulated cells are subjectively selected for further examination. Below the melting level, we compare sequential cross-sections of retrieved and simulated raindrop size distribution parameters. Above the melting level, we examine time series of KDP and radar differential reflectivity (ZDR) statistics from observations and calculated from simulated supercooled rain properties, alongside simulated vertical wind and supercooled rain mixing ratio statistics. Results indicate that the operational weather radar measurements offer multiple constraints on the properties of simulated convective cells, with substantial value added from derived KDP and retrieved rain properties. The value of collocated three-dimensional lightning mapping array measurements, which are relatively rare in the continental U.S., supports the choice of Houston as a suitable location for future field studies to improve the simulation and understanding of convective updraft physics. However, rapid evolution of cells between routine volume scans motivates consideration of adaptive scan strategies or radar imaging technologies to amend operational weather radar capabilities. A three-year climatology of isolated cell tracks, prepared using a more efficient algorithm, yields additional relevant information. Isolated cells are found within the KHGX domain on roughly 40 % of days year-round, with greatest concentration in the northwest quadrant, but roughly fivefold more cells occur during June through September. During this enhanced occurrence period, the cells initiate following a strong diurnal cycle that peaks in the early afternoon, typically follow a south-to-north flow, and dissipate within an hour, consistent with the case study examples. Statistics indicate that ~ 150 isolated cells initiate and dissipate within 70 km of the KHGX radar during the enhanced occurrence period annually, and roughly ten times as many within 200 km, suitable for multi-instrument Lagrangian observation strategies. In addition to ancillary meteorological and aerosol measurements, robust vertical wind speed retrievals would add substantial value to a radar-driven field campaign.


2018 ◽  
Vol 75 (8) ◽  
pp. 2787-2800 ◽  
Author(s):  
Robert Conrick ◽  
Clifford F. Mass ◽  
Qi Zhong

Abstract Two Kelvin–Helmholtz (KH) wave events over western Washington State were simulated and evaluated using observations from the Olympic Mountains Experiment (OLYMPEX) field campaign. The events, 12 and 17 December 2015, were simulated realistically by the WRF-ARW Model, duplicating the mesoscale environment, location, and structure of embedded KH waves, which had observed wavelengths of approximately 5 km. In simulations of both cases, waves developed from instability within an intense shear layer, caused by low-level easterly flow surmounted by westerly winds aloft. The low-level easterlies resulted from blocking by the Olympic Mountains in the 12 December case, while in the 17 December event, the easterly flow was produced by the synoptic environment. Simulated microphysics were evaluated for both cases using OLYMPEX observations. When the KH waves were within the melting level, simulated microphysical fields, such as hydrometeor mixing ratios, evinced considerable oscillatory behavior. In contrast, when waves were located below the melting level, the microphysical response was attenuated. Turning off the model’s microphysics scheme and latent heating resulted in weakened KH wave activity, while removing the Olympic Mountains eliminated KH waves in the 12 December event but not the 17 December case. Finally, the impact of several microphysics parameterizations on KH activity was evaluated for both events.


2016 ◽  
Vol 144 (2) ◽  
pp. 737-758 ◽  
Author(s):  
Marcus van Lier-Walqui ◽  
Ann M. Fridlind ◽  
Andrew S. Ackerman ◽  
Scott Collis ◽  
Jonathan Helmus ◽  
...  

Abstract The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.


Sign in / Sign up

Export Citation Format

Share Document