Towards Moon-based monitoring of energy budget of the earth climate system

Author(s):  
Shaopeng Huang ◽  
Jingjuan Liao ◽  
Jie Guang ◽  
Jiangtao Wu ◽  
Shengshan Bi ◽  
...  
Author(s):  
V. Danylevsky

The article describes briefly the problem of the aerosols influence on the energetic budget of the Earth whole climate system and of the atmosphere particularly. The literary sources comprising such estimations are analyzed and aerosols basic properties are presented which are necessary to determine the quantitative estimations of the aerosols climatology effects. Basic terms and definitions are stated that are using to estimate the influence of the external and internal agents of the climate system on its energy budget. Basic features of the algorithms used to compute the co-called radiative forcing from data of the sun-photometer international network AERONET briefly described. The estimations of the aerosols radiative forcing obtained from measurements with the sun-photometer at the Kyiv AERONET site starting from 2008 are presented. Also the comparison of the Kyiv aerosol RF data to the aerosol RF data at some others urban regions of the globe are presented.


2012 ◽  
Vol 54 ◽  
pp. 43-54 ◽  
Author(s):  
Jean-Claude Mareschal ◽  
Claude Jaupart ◽  
Catherine Phaneuf ◽  
Claire Perry
Keyword(s):  

2020 ◽  
Vol 10 (4) ◽  
pp. 20190106 ◽  
Author(s):  
Jonathan L. Payne ◽  
Aviv Bachan ◽  
Noel A. Heim ◽  
Pincelli M. Hull ◽  
Matthew L. Knope

The half-billion-year history of animal evolution is characterized by decreasing rates of background extinction. Earth's increasing habitability for animals could result from several processes: (i) a decrease in the intensity of interactions among species that lead to extinctions; (ii) a decrease in the prevalence or intensity of geological triggers such as flood basalt eruptions and bolide impacts; (iii) a decrease in the sensitivity of animals to environmental disturbance; or (iv) an increase in the strength of stabilizing feedbacks within the climate system and biogeochemical cycles. There is no evidence that the prevalence or intensity of interactions among species or geological extinction triggers have decreased over time. There is, however, evidence from palaeontology, geochemistry and comparative physiology that animals have become more resilient to an environmental change and that the evolution of complex life has, on the whole, strengthened stabilizing feedbacks in the climate system. The differential success of certain phyla and classes appears to result, at least in part, from the anatomical solutions to the evolution of macroscopic size that were arrived at largely during Ediacaran and Cambrian time. Larger-bodied animals, enabled by increased anatomical complexity, were increasingly able to mix the marine sediment and water columns, thus promoting stability in biogeochemical cycles. In addition, body plans that also facilitated ecological differentiation have tended to be associated with lower rates of extinction. In this sense, Cambrian solutions to Cambrian problems have had a lasting impact on the trajectory of complex life and, in turn, fundamental properties of the Earth system.


2021 ◽  
Author(s):  
Florence Marti ◽  
Alejandro Blazquez ◽  
Benoit Meyssignac ◽  
Michaël Ablain ◽  
Anne Barnoud ◽  
...  

Abstract. The Earth energy imbalance (EEI) at the top of the atmosphere is responsible for the accumulation of heat in the climate system. Monitoring the EEI is therefore necessary to better understand the Earth’s warming climate. Measuring the EEI is challenging as it is a globally integrated variable whose variations are small (0.5–1 W m−2) compared to the amount of energy entering and leaving the climate system (~ 340 W m−2). Since the ocean absorbs more than 90 % of the excess energy stored by the Earth system, estimating the ocean heat content (OHC) provides an accurate proxy of the EEI. This study provides a space geodetic estimation of the OHC changes at global and regional scales based on the combination of space altimetry and space gravimetry measurements. From this estimate, the global variations in the EEI are derived with realistic estimates of its uncertainty. The mean EEI value is estimated at +0.74 ± 0.22 W m−2 (90 % confidence level) between August 2002 and August 2016. Comparisons against independent estimates based on Argo data and on CERES measurements show good agreement within the error bars of the global mean and the time variations in EEI. Further improvements are needed to reduce uncertainties and to improve the time series especially at interannual and smaller time scales. The space geodetic OHC-EEI product is freely available at https://doi.org/10.24400/527896/a01-2020.003.


2021 ◽  
Author(s):  
Artem Feofilov ◽  
Helene Chepfer ◽  
Vincent Noel ◽  
Marjolaine Chiriaco

<p>Clouds and aerosols play an important role in the Earth’s energy budget through a complex interaction with solar, atmospheric, and terrestrial radiation, and air humidity. Optically thick clouds efficiently reflect the incoming solar radiation and, globally, clouds are responsible for about two thirds of the planetary albedo. Thin cirrus trap the outgoing longwave radiation and keep the planet warm. Aerosols scatter or absorb sunlight depending on their size and shape and interact with clouds in various ways.</p><p>Due to the importance of clouds and aerosols for the Earth’s energy budget, global satellite observations of their properties are essential for climate studies, for constraining climate models, and for evaluating cloud parameterizations. Active sounding from space by lidars and radars is advantageous since it provides the vertically resolved information. This has been proven by CALIOP lidar which has been observing the Earth’s atmosphere since 2006. Another instrument of this kind, CATS lidar on-board ISS provided measurements for over 33 months starting from the beginning of 2015. The ALADIN lidar on-board ADM/Aeolus has been measuring horizontal winds and aerosols/clouds since August 2018. More lidars are planned – in 2022, the ATLID/EarthCare lidar will be launched and other space-borne lidars are in the development phase.</p><p>In this work, we compare the scattering ratio products retrieved from ALADIN and CALIOP observations. The former is aimed at 35 deg from nadir, it measures the atmospheric backscatter at 355nm from nadir, is capable of separating the molecular and particular components (HSRL), and provides the profiles with a vertical resolution of ~1km up to 20km altitude.  The latter, operating at 532nm is aimed at 3 deg from nadir and measures the total backscatter up to 40 km. Its natural vertical resolution is higher than that of ALADIN, but the scattering ratio product used in the comparison is provided at ~0.5km vertical grid.</p><p>We have performed a search of nearly simultaneous common volume observations of atmosphere by these two instruments for the period from 28/06/2019 through 31/12/2019 and analyzed the collocated data. We present the zonal averages of scattering ratios as well as the instantaneous profile comparisons and the statistical analysis of cloud detection, cloud height agreement, and temporal evolution of these characteristics.</p><p>The preliminary conclusion, which can be drawn from this analysis, is that the general agreement of scattering ratio profiles retrieved from ALADIN and CALIOP observations is good up to 6-7 km height whereas in the higher atmospheric layers ALADIN is less sensitive to clouds than the CALIOP. This lack of sensitivity might be compensated by further averaging of the input signals and/or by an updating of the retrieval algorithms using the collocated observations dataset provided in the present work.</p>


2019 ◽  
Author(s):  
Valerio Lembo ◽  
Frank Lunkeit ◽  
Valerio Lucarini

Abstract. This work presents Thermodynamic Diagnostic Tool (TheDiaTo), a novel diagnostic tool for studying the thermodynamics of the climate systems with a wide range of applications, from sensitivity studies to model tuning. It includes a number of modules for assessing the internal energy budget, the hydrological cycle, the Lorenz Energy Cycle and the material entropy production, respectively. The routine receives as inputs energy fluxes at surface and at the Top-of-Atmosphere (TOA), for the computation of energy budgets at Top-of-Atmosphere (TOA), at the surface, and in the atmosphere as a residual. Meridional enthalpy transports are also computed from the divergence of the zonal mean energy budget fluxes; location and intensity of peaks in the two hemispheres are then provided as outputs. Rainfall, snowfall and latent heat fluxes are received as inputs for computing the water mass and latent energy budgets. If a land-sea mask is provided, the required quantities are separately computed over continents and oceans. The diagnostic tool also computes the Lorenz Energy Cycle (LEC) and its storage/conversion terms as annual mean global and hemispheric values. In order to achieve this, one needs to provide as input three-dimensional daily fields of horizontal wind velocity and temperature in the troposphere. Two methods have been implemented for the computation of the material entropy production, one relying on the convergence of radiative heat fluxes in the atmosphere (indirect method), one combining the irreversible processes occurring in the climate system, particularly heat fluxes in the boundary layer, the hydrological cycle and the kinetic energy dissipation as retrieved from the residuals of the LEC. A version of these diagnostics has been developed as part of the Earth System Model eValuation Tool (ESMValTool) v2.0a1, in order to assess the performances of CMIP6 model simulations, and will be available in the next release of the tool. The aim of this software is to provide a comprehensive picture of the thermodynamics of the climate system as reproduced in the state-of-the-art coupled general circulation models. This can prove useful for better understanding anthropogenic and natural climate change, paleoclimatic climate variability, and climatic tipping points.


Sign in / Sign up

Export Citation Format

Share Document