scholarly journals LAHNet: A Convolutional Neural Network Fusing Low- and High-Level Features for Aerial Scene Classification

Author(s):  
Yuansheng Hua ◽  
Lichao Mou ◽  
Xiao Xiang Zhu
2021 ◽  
Vol 13 (24) ◽  
pp. 5076
Author(s):  
Di Wang ◽  
Jinhui Lan

Remote sensing scene classification converts remote sensing images into classification information to support high-level applications, so it is a fundamental problem in the field of remote sensing. In recent years, many convolutional neural network (CNN)-based methods have achieved impressive results in remote sensing scene classification, but they have two problems in extracting remote sensing scene features: (1) fixed-shape convolutional kernels cannot effectively extract features from remote sensing scenes with complex shapes and diverse distributions; (2) the features extracted by CNN contain a large number of redundant and invalid information. To solve these problems, this paper constructs a deformable convolutional neural network to adapt the convolutional sampling positions to the shape of objects in the remote sensing scene. Meanwhile, the spatial and channel attention mechanisms are used to focus on the effective features while suppressing the invalid ones. The experimental results indicate that the proposed method is competitive to the state-of-the-art methods on three remote sensing scene classification datasets (UCM, NWPU, and AID).


2018 ◽  
Vol 1085 ◽  
pp. 042040
Author(s):  
Adriano Di Florio ◽  
Felice Pantaleo ◽  
Antonio Carta ◽  

2020 ◽  
Vol 10 (15) ◽  
pp. 5333
Author(s):  
Anam Manzoor ◽  
Waqar Ahmad ◽  
Muhammad Ehatisham-ul-Haq ◽  
Abdul Hannan ◽  
Muhammad Asif Khan ◽  
...  

Emotions are a fundamental part of human behavior and can be stimulated in numerous ways. In real-life, we come across different types of objects such as cake, crab, television, trees, etc., in our routine life, which may excite certain emotions. Likewise, object images that we see and share on different platforms are also capable of expressing or inducing human emotions. Inferring emotion tags from these object images has great significance as it can play a vital role in recommendation systems, image retrieval, human behavior analysis and, advertisement applications. The existing schemes for emotion tag perception are based on the visual features, like color and texture of an image, which are poorly affected by lightning conditions. The main objective of our proposed study is to address this problem by introducing a novel idea of inferring emotion tags from the images based on object-related features. In this aspect, we first created an emotion-tagged dataset from the publicly available object detection dataset (i.e., “Caltech-256”) using subject evaluation from 212 users. Next, we used a convolutional neural network-based model to automatically extract the high-level features from object images for recognizing nine (09) emotion categories, such as amusement, awe, anger, boredom, contentment, disgust, excitement, fear, and sadness. Experimental results on our emotion-tagged dataset endorse the success of our proposed idea in terms of accuracy, precision, recall, specificity, and F1-score. Overall, the proposed scheme achieved an accuracy rate of approximately 85% and 79% using top-level and bottom-level emotion tagging, respectively. We also performed a gender-based analysis for inferring emotion tags and observed that male and female subjects have discernment in emotions perception concerning different object categories.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


2018 ◽  
Vol 8 (12) ◽  
pp. 2367 ◽  
Author(s):  
Hongling Luo ◽  
Jun Sang ◽  
Weiqun Wu ◽  
Hong Xiang ◽  
Zhili Xiang ◽  
...  

In recent years, the trampling events due to overcrowding have occurred frequently, which leads to the demand for crowd counting under a high-density environment. At present, there are few studies on monitoring crowds in a large-scale crowded environment, while there exists technology drawbacks and a lack of mature systems. Aiming to solve the crowd counting problem with high-density under complex environments, a feature fusion-based deep convolutional neural network method FF-CNN (Feature Fusion of Convolutional Neural Network) was proposed in this paper. The proposed FF-CNN mapped the crowd image to its crowd density map, and then obtained the head count by integration. The geometry adaptive kernels were adopted to generate high-quality density maps which were used as ground truths for network training. The deconvolution technique was used to achieve the fusion of high-level and low-level features to get richer features, and two loss functions, i.e., density map loss and absolute count loss, were used for joint optimization. In order to increase the sample diversity, the original images were cropped with a random cropping method for each iteration. The experimental results of FF-CNN on the ShanghaiTech public dataset showed that the fusion of low-level and high-level features can extract richer features to improve the precision of density map estimation, and further improve the accuracy of crowd counting.


2019 ◽  
Vol 12 (1) ◽  
pp. 86 ◽  
Author(s):  
Rafael Pires de Lima ◽  
Kurt Marfurt

Remote-sensing image scene classification can provide significant value, ranging from forest fire monitoring to land-use and land-cover classification. Beginning with the first aerial photographs of the early 20th century to the satellite imagery of today, the amount of remote-sensing data has increased geometrically with a higher resolution. The need to analyze these modern digital data motivated research to accelerate remote-sensing image classification. Fortunately, great advances have been made by the computer vision community to classify natural images or photographs taken with an ordinary camera. Natural image datasets can range up to millions of samples and are, therefore, amenable to deep-learning techniques. Many fields of science, remote sensing included, were able to exploit the success of natural image classification by convolutional neural network models using a technique commonly called transfer learning. We provide a systematic review of transfer learning application for scene classification using different datasets and different deep-learning models. We evaluate how the specialization of convolutional neural network models affects the transfer learning process by splitting original models in different points. As expected, we find the choice of hyperparameters used to train the model has a significant influence on the final performance of the models. Curiously, we find transfer learning from models trained on larger, more generic natural images datasets outperformed transfer learning from models trained directly on smaller remotely sensed datasets. Nonetheless, results show that transfer learning provides a powerful tool for remote-sensing scene classification.


Sign in / Sign up

Export Citation Format

Share Document