Hierarchical Deep Feature Representation for High-Resolution Scene Classification

Author(s):  
Xiaoyong Bian ◽  
Chunfang Chen ◽  
Chunhua Deng ◽  
Ruiyao Liu ◽  
Qian Du
2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunlong Yu ◽  
Fuxian Liu

One of the challenging problems in understanding high-resolution remote sensing images is aerial scene classification. A well-designed feature representation method and classifier can improve classification accuracy. In this paper, we construct a new two-stream deep architecture for aerial scene classification. First, we use two pretrained convolutional neural networks (CNNs) as feature extractor to learn deep features from the original aerial image and the processed aerial image through saliency detection, respectively. Second, two feature fusion strategies are adopted to fuse the two different types of deep convolutional features extracted by the original RGB stream and the saliency stream. Finally, we use the extreme learning machine (ELM) classifier for final classification with the fused features. The effectiveness of the proposed architecture is tested on four challenging datasets: UC-Merced dataset with 21 scene categories, WHU-RS dataset with 19 scene categories, AID dataset with 30 scene categories, and NWPU-RESISC45 dataset with 45 challenging scene categories. The experimental results demonstrate that our architecture gets a significant classification accuracy improvement over all state-of-the-art references.


2020 ◽  
Vol 12 (4) ◽  
pp. 742 ◽  
Author(s):  
Ruixi Zhu ◽  
Li Yan ◽  
Nan Mo ◽  
Yi Liu

We have been made aware that the innovative contributions, research method and the majority of the content of this article [...]


2019 ◽  
Vol 11 (21) ◽  
pp. 2504 ◽  
Author(s):  
Jun Zhang ◽  
Min Zhang ◽  
Lukui Shi ◽  
Wenjie Yan ◽  
Bin Pan

Scene classification is one of the bases for automatic remote sensing image interpretation. Recently, deep convolutional neural networks have presented promising performance in high-resolution remote sensing scene classification research. In general, most researchers directly use raw deep features extracted from the convolutional networks to classify scenes. However, this strategy only considers single scale features, which cannot describe both the local and global features of images. In fact, the dissimilarity of scene targets in the same category may result in convolutional features being unable to classify them into the same category. Besides, the similarity of the global features in different categories may also lead to failure of fully connected layer features to distinguish them. To address these issues, we propose a scene classification method based on multi-scale deep feature representation (MDFR), which mainly includes two contributions: (1) region-based features selection and representation; and (2) multi-scale features fusion. Initially, the proposed method filters the multi-scale deep features extracted from pre-trained convolutional networks. Subsequently, these features are fused via two efficient fusion methods. Our method utilizes the complementarity between local features and global features by effectively exploiting the features of different scales and discarding the redundant information in features. Experimental results on three benchmark high-resolution remote sensing image datasets indicate that the proposed method is comparable to some state-of-the-art algorithms.


2021 ◽  
Vol 13 (3) ◽  
pp. 433
Author(s):  
Junge Shen ◽  
Tong Zhang ◽  
Yichen Wang ◽  
Ruxin Wang ◽  
Qi Wang ◽  
...  

Remote sensing images contain complex backgrounds and multi-scale objects, which pose a challenging task for scene classification. The performance is highly dependent on the capacity of the scene representation as well as the discriminability of the classifier. Although multiple models possess better properties than a single model on these aspects, the fusion strategy for these models is a key component to maximize the final accuracy. In this paper, we construct a novel dual-model architecture with a grouping-attention-fusion strategy to improve the performance of scene classification. Specifically, the model employs two different convolutional neural networks (CNNs) for feature extraction, where the grouping-attention-fusion strategy is used to fuse the features of the CNNs in a fine and multi-scale manner. In this way, the resultant feature representation of the scene is enhanced. Moreover, to address the issue of similar appearances between different scenes, we develop a loss function which encourages small intra-class diversities and large inter-class distances. Extensive experiments are conducted on four scene classification datasets include the UCM land-use dataset, the WHU-RS19 dataset, the AID dataset, and the OPTIMAL-31 dataset. The experimental results demonstrate the superiority of the proposed method in comparison with the state-of-the-arts.


2021 ◽  
Vol 13 (2) ◽  
pp. 328
Author(s):  
Wenkai Liang ◽  
Yan Wu ◽  
Ming Li ◽  
Yice Cao ◽  
Xin Hu

The classification of high-resolution (HR) synthetic aperture radar (SAR) images is of great importance for SAR scene interpretation and application. However, the presence of intricate spatial structural patterns and complex statistical nature makes SAR image classification a challenging task, especially in the case of limited labeled SAR data. This paper proposes a novel HR SAR image classification method, using a multi-scale deep feature fusion network and covariance pooling manifold network (MFFN-CPMN). MFFN-CPMN combines the advantages of local spatial features and global statistical properties and considers the multi-feature information fusion of SAR images in representation learning. First, we propose a Gabor-filtering-based multi-scale feature fusion network (MFFN) to capture the spatial pattern and get the discriminative features of SAR images. The MFFN belongs to a deep convolutional neural network (CNN). To make full use of a large amount of unlabeled data, the weights of each layer of MFFN are optimized by unsupervised denoising dual-sparse encoder. Moreover, the feature fusion strategy in MFFN can effectively exploit the complementary information between different levels and different scales. Second, we utilize a covariance pooling manifold network to extract further the global second-order statistics of SAR images over the fusional feature maps. Finally, the obtained covariance descriptor is more distinct for various land covers. Experimental results on four HR SAR images demonstrate the effectiveness of the proposed method and achieve promising results over other related algorithms.


Sign in / Sign up

Export Citation Format

Share Document