Super-Resolution of Large Volumes of Sentinel-2 Images with High Performance Distributed Deep Learning

Author(s):  
Run Zhang ◽  
Gabriele Cavallaro ◽  
Jenia Jitsev
2021 ◽  
Vol 11 (3) ◽  
pp. 1089
Author(s):  
Suhong Yoo ◽  
Jisang Lee ◽  
Junsu Bae ◽  
Hyoseon Jang ◽  
Hong-Gyoo Sohn

Aerial images are an outstanding option for observing terrain with their high-resolution (HR) capability. The high operational cost of aerial images makes it difficult to acquire periodic observation of the region of interest. Satellite imagery is an alternative for the problem, but low-resolution is an obstacle. In this study, we proposed a context-based approach to simulate the 10 m resolution of Sentinel-2 imagery to produce 2.5 and 5.0 m prediction images using the aerial orthoimage acquired over the same period. The proposed model was compared with an enhanced deep super-resolution network (EDSR), which has excellent performance among the existing super-resolution (SR) deep learning algorithms, using the peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and root-mean-squared error (RMSE). Our context-based ResU-Net outperformed the EDSR in all three metrics. The inclusion of the 60 m resolution of Sentinel-2 imagery performs better through fine-tuning. When 60 m images were included, RMSE decreased, and PSNR and SSIM increased. The result also validated that the denser the neural network, the higher the quality. Moreover, the accuracy is much higher when both denser feature dimensions and the 60 m images were used.


Author(s):  
Michal Kawulok ◽  
Tomasz Tarasiewicz ◽  
Jakub Nalepa ◽  
Diana Tyrna ◽  
Daniel Kostrzewa

Author(s):  
M. Galar ◽  
R. Sesma ◽  
C. Ayala ◽  
L. Albizua ◽  
C. Aranda

Abstract. Copernicus program via its Sentinel missions is making earth observation more accessible and affordable for everybody. Sentinel-2 images provide multi-spectral information every 5 days for each location. However, the maximum spatial resolution of its bands is 10m for RGB and near-infrared bands. Increasing the spatial resolution of Sentinel-2 images without additional costs, would make any posterior analysis more accurate. Most approaches on super-resolution for Sentinel-2 have focused on obtaining 10m resolution images for those at lower resolutions (20m and 60m), taking advantage of the information provided by bands of finer resolutions (10m). Otherwise, our focus is on increasing the resolution of the 10m bands, that is, super-resolving 10m bands to 2.5m resolution, where no additional information is available. This problem is known as single-image super-resolution and deep learning-based approaches have become the state-of-the-art for this problem on standard images. Obviously, models learned for standard images do not translate well to satellite images. Hence, the problem is how to train a deep learning model for super-resolving Sentinel-2 images when no ground truth exist (Sentinel-2 images at 2.5m). We propose a methodology for learning Convolutional Neural Networks for Sentinel-2 image super-resolution making use of images from other sensors having a high similarity with Sentinel-2 in terms of spectral bands, but greater spatial resolution. Our proposal is tested with a state-of-the-art neural network showing that it can be useful for learning to increase the spatial resolution of RGB and near-infrared bands of Sentinel-2.


Author(s):  
Thomas Küstner ◽  
Camila Munoz ◽  
Alina Psenicny ◽  
Aurelien Bustin ◽  
Niccolo Fuin ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


2021 ◽  
Vol 52 (S1) ◽  
pp. 187-187
Author(s):  
Yanpeng Cao ◽  
Feng Yu ◽  
Yongming Tang

2021 ◽  
Vol 12 (3) ◽  
pp. 46-47
Author(s):  
Nikita Saxena

Space-borne satellite radiometers measure Sea Surface Temperature (SST), which is pivotal to studies of air-sea interactions and ocean features. Under clear sky conditions, high resolution measurements are obtainable. But under cloudy conditions, data analysis is constrained to the available low resolution measurements. We assess the efficiency of Deep Learning (DL) architectures, particularly Convolutional Neural Networks (CNN) to downscale oceanographic data from low spatial resolution (SR) to high SR. With a focus on SST Fields of Bay of Bengal, this study proves that Very Deep Super Resolution CNN can successfully reconstruct SST observations from 15 km SR to 5km SR, and 5km SR to 1km SR. This outcome calls attention to the significance of DL models explicitly trained for the reconstruction of high SR SST fields by using low SR data. Inference on DL models can act as a substitute to the existing computationally expensive downscaling technique: Dynamical Downsampling. The complete code is available on this Github Repository.


Sign in / Sign up

Export Citation Format

Share Document