Remote Sensing Image Spatio-Temporal Fusion via a Generative Adversarial Network Through One Prior Image Pair

Author(s):  
Yiyao Song ◽  
Hongyan Zhang ◽  
Liangpei Zhang
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4867
Author(s):  
Lu Chen ◽  
Hongjun Wang ◽  
Xianghao Meng

With the development of science and technology, neural networks, as an effective tool in image processing, play an important role in gradual remote-sensing image-processing. However, the training of neural networks requires a large sample database. Therefore, expanding datasets with limited samples has gradually become a research hotspot. The emergence of the generative adversarial network (GAN) provides new ideas for data expansion. Traditional GANs either require a large number of input data, or lack detail in the pictures generated. In this paper, we modify a shuffle attention network and introduce it into GAN to generate higher quality pictures with limited inputs. In addition, we improved the existing resize method and proposed an equal stretch resize method to solve the problem of image distortion caused by different input sizes. In the experiment, we also embed the newly proposed coordinate attention (CA) module into the backbone network as a control test. Qualitative indexes and six quantitative evaluation indexes were used to evaluate the experimental results, which show that, compared with other GANs used for picture generation, the modified Shuffle Attention GAN proposed in this paper can generate more refined and high-quality diversified aircraft pictures with more detailed features of the object under limited datasets.


2021 ◽  
Vol 12 (6) ◽  
pp. 1-20
Author(s):  
Fayaz Ali Dharejo ◽  
Farah Deeba ◽  
Yuanchun Zhou ◽  
Bhagwan Das ◽  
Munsif Ali Jatoi ◽  
...  

Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from a remotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks (GANs) have made breakthroughs for the challenging task of single image super-resolution (SISR) . However, the generated image still suffers from undesirable artifacts such as the absence of texture-feature representation and high-frequency information. We propose a frequency domain-based spatio-temporal remote sensing single image super-resolution technique to reconstruct the HR image combined with generative adversarial networks (GANs) on various frequency bands (TWIST-GAN). We have introduced a new method incorporating Wavelet Transform (WT) characteristics and transferred generative adversarial network. The LR image has been split into various frequency bands by using the WT, whereas the transfer generative adversarial network predicts high-frequency components via a proposed architecture. Finally, the inverse transfer of wavelets produces a reconstructed image with super-resolution. The model is first trained on an external DIV2 K dataset and validated with the UC Merced Landsat remote sensing dataset and Set14 with each image size of 256 × 256. Following that, transferred GANs are used to process spatio-temporal remote sensing images in order to minimize computation cost differences and improve texture information. The findings are compared qualitatively and qualitatively with the current state-of-art approaches. In addition, we saved about 43% of the GPU memory during training and accelerated the execution of our simplified version by eliminating batch normalization layers.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Tian ◽  
Xiaorou Zhong ◽  
Ming Chen

Accurate remote sensing image segmentation can guide human activities well, but current image semantic segmentation methods cannot meet the high-precision semantic recognition requirements of complex images. In order to further improve the accuracy of remote sensing image semantic segmentation, this paper proposes a new image semantic segmentation method based on Generative Adversarial Network (GAN) and Fully Convolutional Neural Network (FCN). This method constructs a deep semantic segmentation network based on FCN, which can enhance the receptive field of the model. GAN is integrated into FCN semantic segmentation network to synthesize the global image feature information and then accurately segment the complex remote sensing image. Through experiments on a variety of datasets, it can be seen that the proposed method can meet the high-efficiency requirements of complex image semantic segmentation and has good semantic segmentation capabilities.


Sign in / Sign up

Export Citation Format

Share Document