A Study on Microwave Emissivity from Wind-Induced Sea Foam

Author(s):  
Xiaoqi Huang ◽  
Saibun Tjuatja ◽  
Zhenzhan Wang ◽  
Jianhua Zhu
Keyword(s):  
1998 ◽  
Vol 103 (C11) ◽  
pp. 24983-24989 ◽  
Author(s):  
Quanhua Liu ◽  
Clemens Simmer ◽  
Eberhard Ruprecht

1993 ◽  
Vol 17 ◽  
pp. 125-130 ◽  
Author(s):  
Matthew Sturm ◽  
Thomas C. Grenfell ◽  
Donald K. Perovich

The microwave emissivity of two snow covers was measured in Alaska in March, 1990. Observations were made on taiga snow near Fairbanks that was 0.83 m thick with a 0.55 m thick basal layer of depth hoar. Other measurements were made on the tundra snow cover at Imnaviat Creek north of the Brooks Range which was 0.27 to 0.64 m thick and consisted of two or more wind slabs overlying a depth hoar layer 0.14 to 0.26 m thick. Density, crystal structure, and grain size were similar in tundra and taiga depth hoar layers.Emissivity was measured at 18.7 and 37 GHz using radiometers mounted on a 1.5 m tall bipod. Measurements were made on undisturbed snow, and then several snow layers were removed and additional measurements were made. This sequence was repeated until all snow had been removed. Effective emissivity values for the full snow depth ranged from 0.6 (37 GHz, H-pol) to 0.95 (18.7 GHz, V-pol) and were similar for both taiga and tundra snow covers. For both snow covers, there was a marked reduction in the effective emissivity (eeff) from that of the underlying ground with a maximum reduction of about 30%. All of the reduction was found to occur within the depth hoar layer. Maximum reduction in eeffcould be caused by a depth hoar layer 0.3 m thick. Overlying wind slab or new snow were nearly “invisible”, increasing the effective emissivity only by a small amount due to self-emittance. Thus, it was difficult to distinguish the two different snow covers on the basis of their emissivity, since both contained 0.3 m of depth hoar or more.


1977 ◽  
Vol 18 (79) ◽  
pp. 195-215 ◽  
Author(s):  
H. Jay Zwally

Abstract Radiative transfer theory is formulated to permit a meaningful definition of emissivity for bulk emitting media such as snow. The emissivity in the Rayleigh-Jeans approximation is then the microwave brightness temperature T B divided by an effective physical temperature 〈T〉. The 〈T〉 is an average of the physical temperature, T(z), weighted by a radiative transfer function ƒ(z). Similarly, where e(z) is the local emittance. An approximate ƒ(z) is used to determine analytically the effects of various absorption coefficients, of scattering coefficients that vary with depth, and of the seasonal variation of T(z). It is shown that a mean emissivity, which is equal to the mean annual T B divided by the mean annual surface temperature T m, is a useful quantity for comparing theory and observations. Snow-crystal size measurements, r(z), at seven locations in Greenland and Antarctica are used to determine the Mie/Rayleigh scattering coefficient γs (z and to calculate the mean emissivities. The observed mean emissivities are determined by a which is the average of 12 monthly Nimbus-5 (1.55 cm) microwave observations, and the Tm measured at the same locations. The calculated emissivities are about one-half of the observed values. The assumption that each snow crystal is an independent and equally effective scatterer, and the use of an approximation to ƒ(z), tend to over-estimate the effect of scattering. Therefore, a parameter multiplying γs (z) is used. The emissivities calculated with a single value of this empirical parameter for all seven locations agree well with the observed emissivities, showing that the microwave emissivity variations of dry polar urn can be characterised as a function of the crystal sizes. One optical depth corresponds to a typical fini depth of 5 m, but significant radiation emanates from up to 30 m. Since r(z) depends on the snow accumulation rate A and T m. the sensitivity of the emissivity to changes in T m or A are estimated using this semi-empirical theory. The results show that a one degree change or uncertainty in Tm is approximately equivalent to a 10% change in A, and that such a change will affect the emissivity by 0.003 to 0.014 or the T B by about 0.6 K to 3 K, depending on the location.


1977 ◽  
Vol 18 (79) ◽  
pp. 195-215 ◽  
Author(s):  
H. Jay Zwally

AbstractRadiative transfer theory is formulated to permit a meaningful definition of emissivity for bulk emitting media such as snow. The emissivity in the Rayleigh-Jeans approximation is then the microwave brightness temperature TB divided by an effective physical temperature 〈T〉. The 〈T〉 is an average of the physical temperature, T(z), weighted by a radiative transfer function ƒ(z). Similarly, where e(z) is the local emittance. An approximate ƒ(z) is used to determine analytically the effects of various absorption coefficients, of scattering coefficients that vary with depth, and of the seasonal variation of T(z). It is shown that a mean emissivity, which is equal to the mean annual TB divided by the mean annual surface temperature Tm, is a useful quantity for comparing theory and observations. Snow-crystal size measurements, r(z), at seven locations in Greenland and Antarctica are used to determine the Mie/Rayleigh scattering coefficient γs(z) and to calculate the mean emissivities. The observed mean emissivities are determined by a which is the average of 12 monthly Nimbus-5 (1.55 cm) microwave observations, and the Tm measured at the same locations. The calculated emissivities are about one-half of the observed values. The assumption that each snow crystal is an independent and equally effective scatterer, and the use of an approximation to ƒ(z), tend to over-estimate the effect of scattering. Therefore, a parameter multiplying γs(z) is used. The emissivities calculated with a single value of this empirical parameter for all seven locations agree well with the observed emissivities, showing that the microwave emissivity variations of dry polar urn can be characterised as a function of the crystal sizes. One optical depth corresponds to a typical fini depth of 5 m, but significant radiation emanates from up to 30 m. Since r(z) depends on the snow accumulation rate A and Tm. the sensitivity of the emissivity to changes in Tm or A are estimated using this semi-empirical theory. The results show that a one degree change or uncertainty in Tm is approximately equivalent to a 10% change in A, and that such a change will affect the emissivity by 0.003 to 0.014 or the TB by about 0.6 K to 3 K, depending on the location.


1994 ◽  
Vol 20 ◽  
pp. 202-206 ◽  
Author(s):  
Ian D. Goodwin ◽  
Martin Higham ◽  
Ian Allison ◽  
Ren Jaiwen

The spatial pattern of accumulation rate for eastern Kemp Land in the elevation range 1850-2700 m is presented together with observations of the physical parameters of snow temperature, average microwave emissivity (19 GHz, H polarization), distribution of depth hoar and firn-crystal diameter. The broad accumulation pattern in the region was found to be significantly low when compared to other coastal areas of East Antarctica such as Wilkes Land. The low accumulation regime is attributed to low atmospheric moisture transport and low penetration of synoptic cyclonic systems on to the coastal slopes. In the absence of high coastal precipitation, the accumulation rate is determined predominantly by surface snow redistribution processes. Attempts to determine accumulation-rate time series using visible layer, δ18O isotope and electrical conductivity stratigraphies were unsuccessful due to the relatively low coastal accumulation rates (less than 280 kg m-2a-1) and the complex modification of precipitation by redistribution processes.δ18O variations of seemingly cyclic nature observed throughout the cores were interpreted as a product of the snow-dune building and erosion processes, together with general redistribution of snows by the surface wind field, under the influence of mesoscale topographic roughness


2014 ◽  
Vol 52 (6) ◽  
pp. 3604-3612 ◽  
Author(s):  
Tinu Antony ◽  
C. Suresh Raju ◽  
Nizy Mathew ◽  
Korak Saha ◽  
K. Krishna Moorthy

1988 ◽  
Vol 26 (5) ◽  
pp. 580-589 ◽  
Author(s):  
P.M. Promes ◽  
T.J. Jackson ◽  
P.E. O'Neill
Keyword(s):  

2006 ◽  
Vol 44 (11) ◽  
pp. 3021-3031 ◽  
Author(s):  
J.A. Maslanik ◽  
M. Sturm ◽  
M.B. Rivas ◽  
A.J. Gasiewski ◽  
J.F. Heinrichs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document