crystal diameter
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 1)

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 721
Author(s):  
Günther J. Redhammer ◽  
Gerold Tippelt ◽  
Andreas Portenkirchner ◽  
Daniel Rettenwander

Li7La3Zr2O12 garnet (LLZO) belongs to the most promising solid electrolytes for the development of solid-state Li batteries. The stability of LLZO upon exposure to air is still a matter of discussion. Therefore, we performed a comprehensive study on the aging behavior of Al-stabilized LLZO (space group (SG) Ia3¯d) and Ga-stabilized LLZO (SG I4¯3d) involving 98 powder and 51 single-crystal X-ray diffraction measurements. A Li+/H+ exchange starts immediately on exposure to air, whereby the exchange is more pronounced in samples with smaller particle/single-crystal diameter. A slight displacement of Li from interstitial Li2 (96h) toward the regular tetrahedral Li1 (24d) sites occurs in Al-stabilized LLZO. In addition, site occupancy at the 96h site decreases as Li+ is exchanged by H+. More extensive hydration during a mild hydrothermal treatment of samples at 90 °C induces a structural phase transition in Al-LLZO to SG I4¯3d with a splitting of the 24d site into two independent tetrahedral sites (i.e., 12a and 12b), whereby Al3+ solely occupies the 12a site. Li+ is preferably removed from the interstitial 48e site (equivalent to 96h). Analogous effects are observed in Ga-stabilized LLZO, which has SG I4¯3d in the pristine state.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 617
Author(s):  
Yaodan Zhang ◽  
Zhijun Li ◽  
Yuanren Xiu ◽  
Chunjiang Li ◽  
Baosen Zhang ◽  
...  

Frazil particles, ice crystals or slushy granules that form in turbulent water, change the freezing properties of ice to create “frazil ice”. To understand the microstructural characteristics of these particles and the physical properties of frazil ice in greater depth, an in situ sampler was designed to collect frazil particles in the Yellow River. The ice crystal microstructural characteristics of the frazil particles (morphology, size, air bubble, and sediment) were observed under a microscope, and their nucleation mechanism was analyzed according to its microstructure. The physical properties of frazil ice (ice crystal microstructure, air bubble, ice density, and sediment content) were also observed. The results showed that these microstructures of frazil particles can be divided into four types: granular, dendritic, needle-like, and serrated. The size of the measured frazil particles ranged from 0.1 to 25 mm. Compared with columnar ice, the crystal microstructure of frazil ice is irregular, with a mean crystal diameter less than 5 mm extending in all directions. The crystal grain size and ice density of frazil ice are smaller than columnar ice, but the bubble and sediment content are larger.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Xia Tang ◽  
Botao Liu ◽  
Yue Yu ◽  
Sheng Liu ◽  
Bing Gao

The difficulties in growing large-size bulk β-Ga2O3 single crystals with the Czochralski method were numerically analyzed. The flow and temperature fields for crystals that were four and six inches in diameter were studied. When the crystal diameter is large and the crucible space becomes small, the flow field near the crystal edge becomes poorly controlled, which results in an unreasonable temperature field, which makes the interface velocity very sensitive to the phase boundary shape. The effect of seed rotation with increasing crystal diameter was also studied. With the increase in crystal diameter, the effect of seed rotation causes more uneven temperature distribution. The difficulty of growing large-size bulk β-Ga2O3 single crystals with the Czochralski method is caused by spiral growth. By using dynamic mesh technology to update the crystal growth interface, the calculation results show that the solid–liquid interface of the four-inch crystal is slightly convex and the center is slightly concave. With the increase of crystal growth time, the symmetry of cylindrical crystal will be broken, which will lead to spiral growth. The numerical results of the six-inch crystal show that the whole solid–liquid interface is concave and unstable, which is not conducive to crystal growth.


2020 ◽  
Vol 1004 ◽  
pp. 14-19
Author(s):  
Takeshi Okamoto ◽  
Takahiro Kanda ◽  
Yuichiro Tokuda ◽  
Nobuyuki Ohya ◽  
Kiyoshi Betsuyaku ◽  
...  

To reduce the cost of silicon carbide (SiC) substrates, we have developed a high-temperature chemical vapor deposition (HTCVD) method for high-productivity crystal growth. We have conducted research using crystals of diameter 4 inches or less. In order to further reduce the cost, development of a 150-mm substrate has been demanded. With increasing crystal diameter, the occurrence of cracks should be suppressed efficiently. The internal structure of the furnace was designed to reduce the distribution of temperature in the radial direction of the crystal, ultimately reducing the stress responsible for the formation cracks. We demonstrated a 150-mm 4H-SiC substrate without cracks using by HTCVD method.


2020 ◽  
Vol 1000 ◽  
pp. 203-209
Author(s):  
Ahmad Fadli ◽  
Amun Amri ◽  
Esty Octiana Sari ◽  
Sukoco Sukoco ◽  
Deden Saprudin

Magnetite nanoparticles have been successfully prepared by hydrothermal method from FeCl3 as starting material. The properties and morphology of the products with different synthesis time and FeCl3 concentration were investigated. Firstly, the FeCl3 with concentration of 0.05 – 0.15 M and 0.10 M sodium citrate as well as 0.15 M were mixed with distilled water containing 0.1 g polyethylene glycol. Subsequenly, the solution was transferred into a Teflon-lined autoclave and it heated into an oven at 210°C for 12 hours. The black precipitate that formed was separated by a bar magnet, then washed with water and ethanol, and dried at 60°C overnight. The magnetite formation begun at 3.5 hours synthesis time with crystal diameter in range of 9.4-30 nm. The crystallinity and crystal size of magnetite increased with reaction time and concentration of FeCl3. The magnetite nanoparticles had a mesoporous structure and bigger pores at higher concentration. The saturation magnetization (Ms) of magnetite was in the range of 59 – 81 Emu/g with coercivity value was near to zero showing that magnetite nanoparticle had superparamagnetic properties.


2020 ◽  
Vol 3 ◽  
pp. 38-48
Author(s):  
Victoriya Gnitsevych ◽  
Tatiana Yudina ◽  
Yuliia Honchar ◽  
Olena Vasylieva ◽  
Liudmyla Diachuk

This study developed a technology of low-lactose semi-finished products, based on fermented whey and pumpkin pulp puree, and offered a possibility of its use in the technology of structured culinary products. This research carried out the required substantiation of the methods of preliminary processing of raw materials, and studied the technological properties and structure of model compositions with their use. During the experiment, a number of studies were carried out, which substantiated the method and modes of condensation of whey, and provided a comparative analysis of the homogeneity of lactose-free and lactose-containing samples of whey under various modes of condensation. The study obtained the results of calculations of the equivalent diameter of the studied samples of lactose-containing and low-lactose whey, condensed by the contact method and in vacuum. It was found, that the structure is homogeneous at a number average crystal diameter of up to 5 μm. The restriction is valid for CLLWV with a calculated diameter of about 3.84 μm with a coefficient of variation of 1.35 % with an increase of 10,000 times. The study revealed the alternation of smooth and granular sections of the micron level (0.1 ... 5 μm) in the structure of the studied low-lactose semi-finished product with an increase of 300 times. It was determined, that the extremum of the differential curve of the particle size distribution of CLLWV corresponds to the number average crystal diameter of 3.84 μm. It was established, that the most homogeneous fractional composition is inherent in the studied sample of CLLWV, for which the values of fraction diameters are in the range from 1.46 μm to 4.96 μm. The optimal ratio of the components of the model CLLWV: FPPP system was determined as 70 % to 30 % respectively. With this composition, the model system is characterized by the formation of protein-pectin complexes, which is confirmed by microscopy with a magnification of 90 times


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1668 ◽  
Author(s):  
Rukmini Gorthy ◽  
Susan Krumdieck ◽  
Catherine Bishop

The recent global pandemic of COVID-19 highlights the urgent need for practical applications of anti-microbial coatings on touch-surfaces. Nanostructured TiO2 is a promising candidate for the passive reduction of transmission when applied to handles, push-plates and switches in hospitals. Here we report control of the nanostructure dimension of the mille-feuille crystal plates in anatase columnar crystals as a function of the coating thickness. This nanoplate thickness is key to achieving the large aspect ratio of surface area to migration path length. TiO2 solid coatings were prepared by pulsed-pressure metalorganic chemical vapor deposition (pp-MOCVD) under the same deposition temperature and mass flux, with thickness ranging from 1.3–16 μm, by varying the number of precursor pulses. SEM and STEM were used to measure the mille-feuille plate width which is believed to be a key functional nano-dimension for photocatalytic activity. Competitive growth produces a larger columnar crystal diameter with thickness. The question is if the nano-dimension also increases with columnar crystal size. We report that the nano-dimension increases with the film thickness, ranging from 17–42 nm. The results of this study can be used to design a coating which has co-optimized thickness for durability and nano-dimension for enhanced photocatalytic properties.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 321 ◽  
Author(s):  
Jingyi Mo ◽  
Robert D. Groot ◽  
Graham McCartney ◽  
Enyu Guo ◽  
Julian Bent ◽  
...  

Ice cream is a complex multi-phase structure and its perceived quality is closely related to the small size of ice crystals in the product. Understanding the quantitative coarsening behaviour of ice crystals will help manufacturers optimise ice cream formulations and processing. Using synchrotron X-ray tomography, we measured the time-dependent coarsening (Ostwald ripening) of ice crystals in ice cream during cooling at 0.05 °C/min. The results show ice crystal coarsening is highly temperature dependent, being rapid from ca. −6 to −12 °C but significantly slower at lower temperatures. We developed a numerical model, based on established coarsening theory, to calculate the relationship between crystal diameter, cooling rate and the weight fraction of sucrose in solution. The ice crystal diameters predicted by the model are found to agree well with the measured values if matrix diffusion is assumed to be slowed by a factor of 1.2 due to the presence of stabilizers or high molecular weight sugars in the ice cream formulation.


Sign in / Sign up

Export Citation Format

Share Document