The Importance of Matching Needs to Satellite System Capability when Monitoring Methane Emissions from Space

Author(s):  
Jean-Francois Gauthier
2021 ◽  
Author(s):  
Jean-Francois Gauthier

Abstract Satellites are a powerful tool in monitoring methane emissions around the world. In the last five years, many new systems have been both announced and deployed, each with different capabilities and designed for a specific purpose. With an increase in options also comes confusion as to how these systems can and should be used, especially in meeting the needs of the oil and gas industry. This paper will examine the different satellite systems available and explain what information they are best suited to provide. The performance parameters of several current and future satellite systems will be presented and supported with recent examples when available. For example, the importance of factors like frequency of revisit, detection threshold, and spatial resolution will be discussed and contrasted with the needs of the oil and gas industry in gaining a more complete understanding of its methane emissions and enabling action to mitigate them. Results from GHGSat's second generation of high-resolution satellites displaying measurements of methane plumes at oil and gas facilities around the world will be presented to demonstrate some of the advantages of the technology. These two satellites, GHGSat-C1 and C2 (Iris and Hugo), were launched in September 2020 and January 2021 respectively and have started delivering a tenfold improvement in performance after incorporating the lessons learned from their predecessor, GHGSat's demonstration satellite Claire. Finally, the ability of these systems to work together and complement each other's capabilities to provide actionable insight to the oil and gas industry will be discussed.


1998 ◽  
Vol 4 (5-6) ◽  
pp. 62-66
Author(s):  
I.D. Gorbenko ◽  
◽  
Yu.V. Stasev ◽  
A.V. Pot ◽  
A.M. Tkachev ◽  
...  

2020 ◽  
Vol 25 (5) ◽  
pp. 465-474
Author(s):  
V.O. Zhilinskiy ◽  
◽  
D.S. Pecheritsa ◽  
L.G. Gagarina ◽  
◽  
...  

The Global Navigation Satellite System has a huge impact on both the public and private sectors, including the social-economic development, it has many applications and is an integral part of many domains. The application of the satellite navigation systems remains the most relevant in the field of transport, including land, air and maritime transport. The GLONASS system consists of three segments and the operation of the entire system depends on functioning of each component, but primarily, the accuracy of measurements depends on the basis forming of the control segment and management, responsible for forming ephemeris-time information. In the work, the influence of ephemeris-time information on the accuracy of solving the navigation problem by the signals of the GLONASS satellite navigation system has been analyzed. The influence of both ephemeris information and the frequency information, and of the time corrections has been individually studied. The accuracy of the ephemeris-time information is especially important when solving the navigation problem by highly precise positioning method. For the analysis the following scenarios of the navigation problem solving have been formed: using high-precision and broadcast ephemeris-time information, a combination of broadcast (high-precision) ephemeris-time information, and high-precision (broadcast) satellite clock offsets and two scenarios with simulation of the calculation of the relative correction to the radio signal carrier frequency. Based on the study results it has been concluded that the contribution of the frequency-time corrections to the error of location determination is of the greatest importance and a huge impact on the error location, while the errors of the ephemeris information are insignificant


Sign in / Sign up

Export Citation Format

Share Document