Monitoring of Methane Emissions in Oil and Gas from Space: Matching Needs with Satellite System Capability, and Advantages of High Resolution Monitoring

2021 ◽  
Author(s):  
Jean-Francois Gauthier

Abstract Satellites are a powerful tool in monitoring methane emissions around the world. In the last five years, many new systems have been both announced and deployed, each with different capabilities and designed for a specific purpose. With an increase in options also comes confusion as to how these systems can and should be used, especially in meeting the needs of the oil and gas industry. This paper will examine the different satellite systems available and explain what information they are best suited to provide. The performance parameters of several current and future satellite systems will be presented and supported with recent examples when available. For example, the importance of factors like frequency of revisit, detection threshold, and spatial resolution will be discussed and contrasted with the needs of the oil and gas industry in gaining a more complete understanding of its methane emissions and enabling action to mitigate them. Results from GHGSat's second generation of high-resolution satellites displaying measurements of methane plumes at oil and gas facilities around the world will be presented to demonstrate some of the advantages of the technology. These two satellites, GHGSat-C1 and C2 (Iris and Hugo), were launched in September 2020 and January 2021 respectively and have started delivering a tenfold improvement in performance after incorporating the lessons learned from their predecessor, GHGSat's demonstration satellite Claire. Finally, the ability of these systems to work together and complement each other's capabilities to provide actionable insight to the oil and gas industry will be discussed.

2020 ◽  
Vol 60 (2) ◽  
pp. 446
Author(s):  
Jean-Francois Gauthier

Since 2016, GHGSat has been operating the world’s first and only satellite specifically designed to monitor methane emissions from industrial facilities around the world. The lessons learned through the success of this demonstration satellite have been incorporated into the company’s next two satellites, the first of which was originally scheduled to launch in September 2019 but was delayed as a result of a rocket failure. The satellite’s technology is ideally suited to the oil and gas industry, particularly unconventional developments in which a high density of facilities can be present. This paper introduces the technology briefly and discusses the predictive analytics applications being developed to augment the efficacy of the satellites in detecting methane emissions. An example of successful application of the predictive analytics engine to detect a methane leak in the Delaware Basin in New Mexico is presented. Parallels are drawn between shale basins in the US and the Surat Basin in Australia, highlighting the applicability of the technology for the oil and gas industry in Australia.


Author(s):  
Angus Bowie

Double Block and Bleed is a term often used in the oil and gas industry to define a level of isolation sufficient to perform maintenance activities. The true definition relates to incumbent valves providing two proven levels of isolation against the outboard pressure to permit breaching of containment in the isolated pipe. This paper assesses how temporary isolation devices can provide equivalent isolation where incumbent valves do not exist at appropriate locations in the system. It reviews the different interpretations of Double Block and Bleed used within the industry and compares how different isolation devices are assessed in relation to the level of isolation they provide. It will reference several examples from around the world of where temporary isolation devices have been used to replace valves and perform repairs in trunk pipelines without depressurising the whole pipeline. It will also cover examples of isolating live process pipe to perform maintenance activities outside plant shutdown.


2021 ◽  
Vol 73 (08) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201272, “Lessons Learned in Developing Human Capital for the Oil and Gas Industry in Kazakhstan,” by Zhassulan Dairov, SPE, KIMEP University and Satbayev University; Murat Syzdykov, SPE, Satbayev University; and Jennifer Miskimins, SPE, Colorado School of Mines, prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, Colorado, 5–7 October. The paper has not been peer reviewed. The World Economic Forum’s (WEF) Human Capital initiative has been implemented at Satbayev University (SU), Almaty, Kazakhstan, during the last 2 years. Participating in this effort are Chevron, Eni, Shell, and the Colorado School of Mines (Mines). The complete paper assesses the effectiveness of project components, such as industry guest lectures, summer internships, and program improvement, and provides lessons learned for human-resource-development initiatives. Introduction In most cases, the industry/ university alliance is intermittent, short-term, and underdeveloped. The engagement of three stakeholders, such as government, industry, and the university, is the most-successful model of joint performance. This approach allows all participants to create competitive advantages in the achievement of common objectives. Moreover, the role of governmental agencies is critical alongside professional organizations in facilitating such cooperation.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


2014 ◽  
Vol 54 (2) ◽  
pp. 545
Author(s):  
Lee Robins

Tracerco Discovery is the world’s first subsea CT scanner, providing high-resolution wall integrity data plus detection of hydrates and other deposits for flow assurance purposes. It is deployed as a remotely operated vehicle (ROV) and the inspection is carried out from the outside of the pipeline. It is the only non-invasive technology capable of inspecting unpiggable coated pipelines and there is no need to remove and replace the pipe’s protective coating. Unpiggable pipelines, especially coated ones, have proven extremely difficult (and in most cases impossible) to inspect for integrity and wall loss issues. An externally deployed tool to do this is needed by the global pipeline industry. Gas hydrates and other pipeline deposits pose a large challenge for the oil and gas industry as they can form restrictions that can result in costly shutdowns and serious safety threats. It is, therefore, important to be able to locate such restrictions subsea with high accuracy to allow safe and efficient remediation operations. Discovery benefits: Production can continue and normal operations are not affected. A high-resolution tomographic image of wall thickness and pipe contents at each scanning location is provided to 2 mm resolution. Coating does not need to be removed. Suitable for gas, liquid, or multiphase flow. Suitable for rigid and flexible lines. Pipe-in-Pipe lines and pipe-bundles can be inspected to measure the wall thickness of outer and inner pipes. The presentation of this extended abstract covers the background of the development work, gives a description of the technology, and shows recent results.


Author(s):  
Carlo De Bernardi

Abstract The API 20S Standard is designed to play a crucial role in leveraging Additive Manufacturing (AM) to foster innovation in the oil and gas industry. The paper, in association with the standard, will facilitate the understanding of how AM will enable equipment design improvements, faster prototyping, and better inventory management. By way of discussing the progress, challenges, and lessons learned from the standardization process, the paper aims to encourage a safer, broader, and faster adoption of AM technologies in the mainstream oil and gas applications. The paper will summarize the streamlining process, feedback from the API 20S task group, and current status of the standardization efforts. Additionally, upcoming challenges and the potential for the oil and gas industry industries to contribute to the standard will be summarized. The paper will also showcase a novel tiered approach (Additive Manufacturing Specification Levels) to allow the users of the document to match different levels of criticality.


Sign in / Sign up

Export Citation Format

Share Document