Cubature Kalman Filter Based Attitude Estimation for Micro Aerial Vehicles

Author(s):  
Zhangsong Shi ◽  
Zhonghong Wu ◽  
Jian Liu ◽  
Bing Fu
2019 ◽  
Vol 72 (5) ◽  
pp. 1254-1274 ◽  
Author(s):  
Ning Li ◽  
Wentao Ma ◽  
Weishi Man ◽  
Liu Cao ◽  
Hui Zhang

The High-degree Cubature Kalman Filter (HCKF) is proposed as a novel methodology based on the arbitrary degree spherical rule, which can achieve better performance than the traditional Kalman filter. However, it also has a large calculation burden when used in a high-dimension and high-degree of accuracy estimation system. The number of sampling points of an HCKF increases polynomially with increasing state-space dimensions, which further increases the calculation burden. The reduction of the number of the state-space dimensions is the main contribution of this study. A strategy for HCKF based on the partitioning of the state-space and orthogonal principle is introduced, referred to as the Multiple Robust HCKF (MRHCKF). It is shown that this technique can effectively reduce the calculation burden for the high-dimension system with robust performance. Numerical simulations are performed for the example of high-dimension relative position and attitude estimation to show that the proposed method can obtain nearly the same performance as the HCKF, while drastically reducing computational complexity.


2020 ◽  
Vol 53 (7-8) ◽  
pp. 1446-1453
Author(s):  
Yong-jun Yu ◽  
Xiang Zhang ◽  
M Sadiq Ali Khan

Stable and accurate attitude estimation is the key to the autonomous control of unmanned aerial vehicle. The Attitude Heading Reference System using micro-electro-mechanical system inertial measurement unit and magnetic sensor as measurement sensors is an indispensable system for attitude estimation of the unmanned aerial vehicle. Aiming at the problem of low precision of the Attitude Heading Reference System caused by the nonlinear attitude model of the micro unmanned aerial vehicle, an attitude heading reference algorithm based on cubature Kalman filter is proposed. Aiming at the nonlocal sampling problem of cubature Kalman filter, the transformed cubature Kalman filter using orthogonal transformation of the sampling point is presented. Meanwhile, an adaptive estimation algorithm of motion acceleration using Kalman filter is proposed, which realizes the online estimation of motion acceleration. The car-based tests show that the algorithm proposed in this paper can accurately estimate the carrier’s motion attitude and motion acceleration without global positioning system. The accuracy of acceleration reaches 0.2 m/s2, and the accuracy of attitude reaches 1°.


Author(s):  
Tao Zhang ◽  
Xiang Xu ◽  
Zhicheng Wang

An interlaced matrix Kalman filter, which is based on vector observations and gyro measurements, is proposed for spacecraft attitude estimation in this paper. It combines the matrix Kalman filter and cubature Kalman filter to estimate spacecraft attitude and gyro drift bias, respectively. The defects of the original matrix Kalman filter, which could only estimate the attitude parameters of spacecraft, are addressed by the proposed interlaced matrix Kalman filter. In addition, the dimensions of cubature Kalman filter for conventional attitude estimation method are reduced by the designed recursive algorithm. It is noted that the two filters are not independent with each other. Firstly, the attitude quaternion of spacecraft is estimated by the modified matrix Kalman filter. Then, the estimated quaternion is input for the recursive cubature Kalman filter, which is used to estimate the gyro drift bias. Finally, the estimated gyro drift bias is compensated for the measurements of the gyros. Therefore, the precision of the estimated attitude of spacecraft is improved by the interacting process of the modified matrix Kalman filter and recursive cubature Kalman filter. A simulation test is designed to verify the advantage of the proposed method by comparing with the previous method, and the results indicate that the proposed algorithm has better performance on convergence rate and stability.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 144373-144381 ◽  
Author(s):  
Xuemei Chen ◽  
Zheng Xuelong ◽  
Zijia Wang ◽  
Mengxi Li ◽  
Yangjiaxin Ou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document