Multiple Robust High-degree Cubature Kalman Filter for Relative Position and Attitude Estimation of Satellite Formation

2019 ◽  
Vol 72 (5) ◽  
pp. 1254-1274 ◽  
Author(s):  
Ning Li ◽  
Wentao Ma ◽  
Weishi Man ◽  
Liu Cao ◽  
Hui Zhang

The High-degree Cubature Kalman Filter (HCKF) is proposed as a novel methodology based on the arbitrary degree spherical rule, which can achieve better performance than the traditional Kalman filter. However, it also has a large calculation burden when used in a high-dimension and high-degree of accuracy estimation system. The number of sampling points of an HCKF increases polynomially with increasing state-space dimensions, which further increases the calculation burden. The reduction of the number of the state-space dimensions is the main contribution of this study. A strategy for HCKF based on the partitioning of the state-space and orthogonal principle is introduced, referred to as the Multiple Robust HCKF (MRHCKF). It is shown that this technique can effectively reduce the calculation burden for the high-dimension system with robust performance. Numerical simulations are performed for the example of high-dimension relative position and attitude estimation to show that the proposed method can obtain nearly the same performance as the HCKF, while drastically reducing computational complexity.

1986 ◽  
Vol 16 (1) ◽  
pp. 19-31 ◽  
Author(s):  
Jukka Rantala

AbstractThis paper deals with experience rating of claims processes of ARIMA structures. By experience rating we mean that future premiums should be only a function of past values of the claims process. The main emphasis is on demonstrating the usefulness of the control-theoretical approach in the search for optimal rating rules. Optimality is here defined to mean as smooth a flow of premiums as possible when the variation in the accumulated profit is restricted to a certain amount. First it is shown how the underlying model in its simplest form can be transformed into the state-space form. Then the Kalman filter technique is used to find the optimal rules. Also a time delay in information is taken into account. The optimal rules are illustrated by examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yong-Gang Zhang ◽  
Yu-Long Huang ◽  
Zhe-Min Wu ◽  
Ning Li

A new moving state marine initial alignment method of strap-down inertial navigation system (SINS) is proposed based on high-degree cubature Kalman filter (CKF), which can capture higher order Taylor expansion terms of nonlinear alignment model than the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial alignment under large heading misalignment angle condition. Simulation results show the efficiency and advantage of the proposed initial alignment method as compared with existing initial alignment methods for the moving state SINS initial alignment with large heading misalignment angle.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2251 ◽  
Author(s):  
Jikai Liu ◽  
Pengfei Wang ◽  
Fusheng Zha ◽  
Wei Guo ◽  
Zhenyu Jiang ◽  
...  

The motion state of a quadruped robot in operation changes constantly. Due to the drift caused by the accumulative error, the function of the inertial measurement unit (IMU) will be limited. Even though multi-sensor fusion technology is adopted, the quadruped robot will lose its ability to respond to state changes after a while because the gain tends to be constant. To solve this problem, this paper proposes a strong tracking mixed-degree cubature Kalman filter (STMCKF) method. According to system characteristics of the quadruped robot, this method makes fusion estimation of forward kinematics and IMU track. The combination mode of traditional strong tracking cubature Kalman filter (TSTCKF) and strong tracking is improved through demonstration. A new method for calculating fading factor matrix is proposed, which reduces sampling times from three to one, saving significantly calculation time. At the same time, the state estimation accuracy is improved from the third-degree accuracy of Taylor series expansion to fifth-degree accuracy. The proposed algorithm can automatically switch the working mode according to real-time supervision of the motion state and greatly improve the state estimation performance of quadruped robot system, exhibiting strong robustness and excellent real-time performance. Finally, a comparative study of STMCKF and the extended Kalman filter (EKF) that is commonly used in quadruped robot system is carried out. Results show that the method of STMCKF has high estimation accuracy and reliable ability to cope with sudden changes, without significantly increasing the calculation time, indicating the correctness of the algorithm and its great application value in quadruped robot system.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Shiyuan Wang ◽  
Yali Feng ◽  
Shukai Duan ◽  
Lidan Wang

Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF) is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 986 ◽  
Author(s):  
Feng Yang ◽  
Yujuan Luo ◽  
Litao Zheng

The cubature Kalman filter (CKF) has poor performance in strongly nonlinear systems while the cubature particle filter has high computational complexity induced by stochastic sampling. To address these problems, a novel CKF named double-Layer cubature Kalman filter (DLCKF) is proposed. In the proposed DLCKF, the prior distribution is represented by a set of weighted deterministic sampling points, and each deterministic sampling point is updated by the inner CKF. Finally, the update mechanism of the outer CKF is used to obtain the state estimations. Simulation results show that the proposed algorithm has not only high estimation accuracy but also low computational complexity, compared with the state-of-the-art filtering algorithms.


Sign in / Sign up

Export Citation Format

Share Document