scholarly journals Adaptive Edge and Fog Computing Paradigm for Wide Area Video and Audio Surveillance

Author(s):  
Ioannis Ledakis ◽  
Thanassis Bouras ◽  
G. Kioumourtzis ◽  
M. Skitsas
2018 ◽  
Vol 10 (11) ◽  
pp. 3832 ◽  
Author(s):  
Francisco-Javier Ferrández-Pastor ◽  
Higinio Mora ◽  
Antonio Jimeno-Morenilla ◽  
Bruno Volckaert

Advances in embedded systems, based on System-on-a-Chip (SoC) architectures, have enabled the development of many commercial devices that are powerful enough to run operating systems and complex algorithms. These devices integrate a set of different sensors with connectivity, computing capacities and cost reduction. In this context, the Internet of Things (IoT) potential increases and introduces other development possibilities: “Things” can now increase computation near the source of the data; consequently, different IoT services can be deployed on local systems. This paradigm is known as “edge computing” and it integrates IoT technologies and cloud computing systems. Edge computing reduces the communications’ bandwidth needed between sensors and the central data centre. Management of sensors, actuators, embedded devices and other resources that may not be continuously connected to a network (such as smartphones) are required for this method. This trend is very attractive for smart building designs, where different subsystems (energy, climate control, security, comfort, user services, maintenance, and operating costs) must be integrated to develop intelligent facilities. In this work, a method to design smart services based on the edge computing paradigm is analysed and proposed. This novel approach overcomes some drawbacks of existing designs related to interoperability and scalability of services. An experimental architecture based on embedded devices is described. Energy management, security system, climate control and information services are the subsystems on which new smart facilities are implemented.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8226
Author(s):  
Ahmed M. Alwakeel

With the advancement of different technologies such as 5G networks and IoT the use of different cloud computing technologies became essential. Cloud computing allowed intensive data processing and warehousing solution. Two different new cloud technologies that inherit some of the traditional cloud computing paradigm are fog computing and edge computing that is aims to simplify some of the complexity of cloud computing and leverage the computing capabilities within the local network in order to preform computation tasks rather than carrying it to the cloud. This makes this technology fits with the properties of IoT systems. However, using such technology introduces several new security and privacy challenges that could be huge obstacle against implementing these technologies. In this paper, we survey some of the main security and privacy challenges that faces fog and edge computing illustrating how these security issues could affect the work and implementation of edge and fog computing. Moreover, we present several countermeasures to mitigate the effect of these security issues.


Author(s):  
Simar Preet Singh ◽  
Rajesh Kumar ◽  
Anju Sharma ◽  
S. Raji Reddy ◽  
Priyanka Vashisht

Background: Fog computing paradigm has recently emerged and gained higher attention in present era of Internet of Things. The growth of large number of devices all around, leads to the situation of flow of packets everywhere on the Internet. To overcome this situation and to provide computations at network edge, fog computing is the need of present time that enhances traffic management and avoids critical situations of jam, congestion etc. Methods: For research purposes, there are many methods to implement the scenarios of fog computing i.e. real-time implementation, implementation using emulators, implementation using simulators etc. The present study aims to describe the various simulation and emulation tools for implementing fog computing scenarios. Results: Review shows that iFogSim is the simulator that most of the researchers use in their research work. Among emulators, EmuFog is being used at higher pace than other available emulators. This might be due to ease of implementation and user-friendly nature of these tools and language these tools are based upon. The use of such tools enhance better research experience and leads to improved quality of service parameters (like bandwidth, network, security etc.). Conclusion: There are many fog computing simulators/emulators based on many different platforms that uses different programming languages. The paper concludes that the two main simulation and emulation tools in the area of fog computing are iFogSim and EmuFog. Accessibility of these simulation/emulation tools enhance better research experience and leads to improved quality of service parameters along with the ease of their usage.


Author(s):  
Zhuo Zou ◽  
Yi Jin ◽  
Paavo Nevalainen ◽  
Yuxiang Huan ◽  
Jukka Heikkonen ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
pp. 65-82
Author(s):  
Sören Henning ◽  
Wilhelm Hasselbring ◽  
Heinz Burmester ◽  
Armin Möbius ◽  
Maik Wojcieszak

AbstractThe Internet of Things adoption in the manufacturing industry allows enterprises to monitor their electrical power consumption in real time and at machine level. In this paper, we follow up on such emerging opportunities for data acquisition and show that analyzing power consumption in manufacturing enterprises can serve a variety of purposes. In two industrial pilot cases, we discuss how analyzing power consumption data can serve the goals reporting, optimization, fault detection, and predictive maintenance. Accompanied by a literature review, we propose to implement the measures real-time data processing, multi-level monitoring, temporal aggregation, correlation, anomaly detection, forecasting, visualization, and alerting in software to tackle these goals. In a pilot implementation of a power consumption analytics platform, we show how our proposed measures can be implemented with a microservice-based architecture, stream processing techniques, and the fog computing paradigm. We provide the implementations as open source as well as a public show case allowing to reproduce and extend our research.


2017 ◽  
Vol 2 (3) ◽  
pp. 112-119 ◽  
Author(s):  
Om-Kolsoom Shahryari ◽  
Amjad Anvari-Moghaddam ◽  
Shadi Shahryari

The smart grid, as a communication network, allows numerous connected devices such as sensors, relays and actuators to interact and cooperate with each other. An Internet-based solution for electricity that provides bidirectional flow of information and power is internet of energy (IoE) which is an extension of smart grid concept. A large number of connected devices and the huge amount of data generated by IoE and issues related to data transmission, process and storage, force IoE to be integrated by cloud computing. Furthermore, in order to enhance the performance and reduce the volume of transmitted data and process information in an acceptable time, fog computing is suggested as a layer between IoE layer and cloud layer. This layer is used as a local processing level that leads to reduction in data transmissions to the cloud. So, it can save energy consumption used by IoE devices to transmit data into cloud because of a long range, low power, wide area and low bit rate wireless telecommunication system which is called LoRaWAN. All devices in fog domain are connected by long range wide area network (LoRa) into a smart gateway.  The gateway which bridges fog domain and cloud, is introduced for scheduling devices/appliances by creating a priority queue which can perform demand side management dynamically. The queue is affected by not only the consumer importance but also the consumer policies and the status of energy resources.


Sign in / Sign up

Export Citation Format

Share Document