Forecast of driving load of hybrid electric vehicles by using discrete cosine transform and Support Vector Machine

Author(s):  
Jian Yang ◽  
Xi Huang ◽  
Ying Tan ◽  
Xingui He
2021 ◽  
Vol 11 (21) ◽  
pp. 10187
Author(s):  
Yonghyeok Ji ◽  
Seongyong Jeong ◽  
Yeongjin Cho ◽  
Howon Seo ◽  
Jaesung Bang ◽  
...  

Transmission mounted electric drive type hybrid electric vehicles (HEVs) engage/disengage an engine clutch when EV↔HEV mode transitions occur. If this engine clutch is not adequately engaged or disengaged, driving power is not transmitted correctly. Therefore, it is required to verify whether engine clutch engagement/disengagement operates normally in the vehicle development process. This paper studied machine learning-based methods for detecting anomalies in the engine clutch engagement/disengagement process. We trained the various models based on multi-layer perceptron (MLP), long short-term memory (LSTM), convolutional neural network (CNN), and one-class support vector machine (one-class SVM) with the actual vehicle test data and compared their results. The test results showed the one-class SVM-based models have the highest anomaly detection performance. Additionally, we found that configuring the training architecture to determine normal/anomaly by data instance and conducting one-class classification is proper for detecting anomalies in the target data.


2021 ◽  
Vol 10 (5) ◽  
pp. 2796-2803
Author(s):  
Linggo Sumarno ◽  
Rifai Chai

The conducted research proposes a feature extraction and classification combination method that is used in a tone recognition system for musical instruments. It is expected that by implementing this combination, the tone recognition system will require fewer feature extraction coefficients than those previously investigated. The proposed combination comprises of feature extraction using discrete cosine transform (DCT) and classification using support vector machine (SVM). Bellyra, clarinet, and pianica tones were used in the experiment, with each indicating a tone with one, several, or many major local peaks in the transform domain. Based on the results of the tests, the proposed combination is efficient enough to be used in a tone recognition system for musical instruments. This is indicated in recognizing a tone, it only needs at least eight feature extraction coefficients.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 569
Author(s):  
Tianze Lan ◽  
Kittisak Jermsittiparsert ◽  
Sara T. Alrashood ◽  
Mostafa Rezaei ◽  
Loiy Al-Ghussain ◽  
...  

Renewable microgrids are new solutions for enhanced security, improved reliability and boosted power quality and operation in power systems. By deploying different sources of renewables such as solar panels and wind units, renewable microgrids can enhance reducing the greenhouse gasses and improve the efficiency. This paper proposes a machine learning based approach for energy management in renewable microgrids considering a reconfigurable structure based on remote switching of tie and sectionalizing. The suggested method considers the advanced support vector machine for modeling and estimating the charging demand of hybrid electric vehicles (HEVs). In order to mitigate the charging effects of HEVs on the system, two different scenarios are deployed; one coordinated and the other one intelligent charging. Due to the complex structure of the problem formulation, a new modified optimization method based on dragonfly is suggested. Moreover, a self-adaptive modification is suggested, which helps the solutions pick the modification method that best fits their situation. Simulation results on an IEEE microgrid test system show its appropriate and efficient quality in both scenarios. According to the prediction results for the total charging demand of the HEVs, the mean absolute percentage error is 0.978, which is very low. Moreover, the results show a 2.5% reduction in the total operation cost of the microgrid in the intelligent charging compared to the coordinated scheme.


Sign in / Sign up

Export Citation Format

Share Document