L2S-MirLoc: A Lightweight Two Stage MiRNA Sub-Cellular Localization Prediction Framework

Author(s):  
Muhammad Nabeel Asim ◽  
Muhammad Ali Ibrahim ◽  
Christoph Zehe ◽  
Olivier Cloarec ◽  
Rickard Sjogren ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Prabina Kumar Meher ◽  
Anil Rai ◽  
Atmakuri Ramakrishna Rao

Abstract Background Localization of messenger RNAs (mRNAs) plays a crucial role in the growth and development of cells. Particularly, it plays a major role in regulating spatio-temporal gene expression. The in situ hybridization is a promising experimental technique used to determine the localization of mRNAs but it is costly and laborious. It is also a known fact that a single mRNA can be present in more than one location, whereas the existing computational tools are capable of predicting only a single location for such mRNAs. Thus, the development of high-end computational tool is required for reliable and timely prediction of multiple subcellular locations of mRNAs. Hence, we develop the present computational model to predict the multiple localizations of mRNAs. Results The mRNA sequences from 9 different localizations were considered. Each sequence was first transformed to a numeric feature vector of size 5460, based on the k-mer features of sizes 1–6. Out of 5460 k-mer features, 1812 important features were selected by the Elastic Net statistical model. The Random Forest supervised learning algorithm was then employed for predicting the localizations with the selected features. Five-fold cross-validation accuracies of 70.87, 68.32, 68.36, 68.79, 96.46, 73.44, 70.94, 97.42 and 71.77% were obtained for the cytoplasm, cytosol, endoplasmic reticulum, exosome, mitochondrion, nucleus, pseudopodium, posterior and ribosome respectively. With an independent test set, accuracies of 65.33, 73.37, 75.86, 72.99, 94.26, 70.91, 65.53, 93.60 and 73.45% were obtained for the respective localizations. The developed approach also achieved higher accuracies than the existing localization prediction tools. Conclusions This study presents a novel computational tool for predicting the multiple localization of mRNAs. Based on the proposed approach, an online prediction server “mLoc-mRNA” is accessible at http://cabgrid.res.in:8080/mlocmrna/. The developed approach is believed to supplement the existing tools and techniques for the localization prediction of mRNAs.


2014 ◽  
Vol 11 (3) ◽  
pp. 873-877
Author(s):  
Xiao-Mei He ◽  
Zheng Qin ◽  
Jun Chen ◽  
Bo Liao ◽  
Wen-Jie Li ◽  
...  

2014 ◽  
Vol 12 (01) ◽  
pp. 1350016 ◽  
Author(s):  
MARCO MERNBERGER ◽  
DANIEL MOOG ◽  
SIMONE STORK ◽  
STEFAN ZAUNER ◽  
UWE G. MAIER ◽  
...  

Predicting the sub-cellular localization of proteins is an important task in bioinformatics, for which many standard prediction tools are available. While these tools are powerful in general and capable of predicting protein localization for the most common compartments, their performance strongly depends on the organism of interest. More importantly, there are special compartments, such as the apicoplast of apicomplexan parasites, for which these tools cannot provide a prediction at all. In the absence of a highly conserved targeting signal, even motif searches may not be able to provide a lead for the accurate prediction of protein localization for a compartment of interest. In order to approach difficult cases of that kind, we propose an alternative method that complements existing approaches by using a more targeted protein sequence model. Moreover, our method makes use of (weighted) measures for time series comparison. To demonstrate its performance, we use this method for predicting localization in special compartments of three different species, for which existing methods yield only sub-optimal results. As shown experimentally, our method is indeed capable of producing reliable predictions of sub-cellular localization for difficult cases, i.e. if training data is scarce and a potential protein targeting signal may not be well conserved.


Author(s):  
J. T. Stasny ◽  
R. C. Burns ◽  
R. W. F. Hardy

Structure-functlon studies of biological N2-fixation have correlated the presence of the enzyme nitrogenase with increased numbers of intracytoplasmic membranes in Azotobacter. However no direct evidence has been provided for the internal cellular localization of any nitrogenase. Recent advances concerned with the crystallizatiorTand the electron microscopic characterization of the Mo-Fe protein component of Azotobacter nitrogenase, prompted the use of this purified protein to obtain antibodies (Ab) to be conjugated to electron dense markers for the intracellular localization of the protein by electron microscopy. The present study describes the use of ferritin conjugated to goat antitMo-Fe protein immunoglobulin (IgG) and the observations following its topical application to thin sections of N2-grown Azotobacter.


Author(s):  
Sengshiu Chung ◽  
Peggy Cebe

We are studying the crystallization and annealing behavior of high performance polymers, like poly(p-pheny1ene sulfide) PPS, and poly-(etheretherketone), PEEK. Our purpose is to determine whether PPS, which is similar in many ways to PEEK, undergoes reorganization during annealing. In an effort to address the issue of reorganization, we are studying solution grown single crystals of PPS as model materials.Observation of solution grown PPS crystals has been reported. Even from dilute solution, embrionic spherulites and aggregates were formed. We observe that these morphologies result when solutions containing uncrystallized polymer are cooled. To obtain samples of uniform single crystals, we have used two-stage self seeding and solution replacement techniques.


1998 ◽  
Vol 23 (3) ◽  
pp. 281-282
Author(s):  
Hutton ◽  
Guo ◽  
Birchall ◽  
Pearson

2007 ◽  
Vol 177 (4S) ◽  
pp. 121-121
Author(s):  
Antonio Dessanti ◽  
Diego Falchetti ◽  
Marco Iannuccelli ◽  
Susanna Milianti ◽  
Gian P. Strusi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document