Analysis Of Machine Learning Algorithms For Wi-Fi-based Indoor Positioning System

Author(s):  
R Abishek ◽  
K R Abishek ◽  
N Hariharan ◽  
M Rakesh Vaideeswaran ◽  
C Sundara Paripooranan
2018 ◽  
Vol 27 (05) ◽  
pp. 1850018 ◽  
Author(s):  
Ahmet Yazıcı ◽  
Sinem Bozkurt Keser ◽  
Serkan Günal ◽  
Uğur Yayan

Indoor positioning system is an active research area. There are various performance metrics such as accuracy, computation time, precision, and f-score in machine learning based indoor positioning systems. The aim of this study is to present a multi-criteria decision strategy to determine suitable machine learning methods for a specific indoor positioning system. This helps to evaluate the performance of machine learning algorithms considering multiple criteria. During the experiments, UJIIndoorLoc, KIOS and RFKON datasets are used from the positioning literature. The algorithms such as k-nearest neighbor, support vector machine, decision tree, naïve bayes and bayesian networks are compared using these datasets. In addition to these, ensemble learning algorithms, namely adaboost and bagging, are utilized to improve the performance of these classifiers. As a conclusion, the test results for any specific dataset are reevaluated using the performance metrics such as accuracy, f-score and computation time, and a multi-criteria decision strategy is proposed to find the most convenient algorithm. The analytical hierarchy process is used for multi-criteria decision. To the best of our knowledge, this is the first work to select the proper machine learning algorithm for an indoor positioning system using multi-criteria decision strategy.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3766 ◽  
Author(s):  
Soumya Rana ◽  
Javier Prieto ◽  
Maitreyee Dey ◽  
Sandra Dudley ◽  
Juan Corchado

Unobtrusive indoor location systems must rely on methods that avoid the deployment of large hardware infrastructures or require information owned by network administrators. Fingerprinting methods can work under these circumstances by comparing the real-time received RSSI values of a smartphone coming from existing Wi-Fi access points with a previous database of stored values with known locations. Under the fingerprinting approach, conventional methods suffer from large indoor scenarios since the number of fingerprints grows with the localization area. To that aim, fingerprinting-based localization systems require fast machine learning algorithms that reduce the computational complexity when comparing real-time and stored values. In this paper, popular machine learning (ML) algorithms have been implemented for the classification of real time RSSI values to predict the user location and propose an intelligent indoor positioning system (I-IPS). The proposed I-IPS has been integrated with multi-agent framework for betterment of context-aware service (CAS). The obtained results have been analyzed and validated through established statistical measurements and superior performance achieved.


Author(s):  
C. Basri ◽  
A. Elkhadimi

Abstract. The advancement of Internet of things (IoT) has revolutionized the field of telecommunication opening the door for interesting applications such as smart cities, resources management, logistics and transportation, wearables and connected healthcare. The emergence of IoT in multiple sectors has enabled the requirement for an accurate real time location information. Location-based services are actually, due to development of networks, sensors, wireless communications and machine learning algorithms, able to collect and transmit data in order to determine the target positions, and support the needs imposed by several applications and use cases. The performance of an indoor positioning system in IoT networks depends on the technical implementation, network architecture, the deployed technology, techniques and algorithms of positioning. This paper highlights the importance of indoor localization in internet of things applications, gives a comprehensive review of indoor positioning techniques and methods implemented in IoT networks, and provides a detailed analysis on recent advances in this field.


Sign in / Sign up

Export Citation Format

Share Document