A Multi-Criteria Decision Strategy to Select a Machine Learning Method for Indoor Positioning System

2018 ◽  
Vol 27 (05) ◽  
pp. 1850018 ◽  
Author(s):  
Ahmet Yazıcı ◽  
Sinem Bozkurt Keser ◽  
Serkan Günal ◽  
Uğur Yayan

Indoor positioning system is an active research area. There are various performance metrics such as accuracy, computation time, precision, and f-score in machine learning based indoor positioning systems. The aim of this study is to present a multi-criteria decision strategy to determine suitable machine learning methods for a specific indoor positioning system. This helps to evaluate the performance of machine learning algorithms considering multiple criteria. During the experiments, UJIIndoorLoc, KIOS and RFKON datasets are used from the positioning literature. The algorithms such as k-nearest neighbor, support vector machine, decision tree, naïve bayes and bayesian networks are compared using these datasets. In addition to these, ensemble learning algorithms, namely adaboost and bagging, are utilized to improve the performance of these classifiers. As a conclusion, the test results for any specific dataset are reevaluated using the performance metrics such as accuracy, f-score and computation time, and a multi-criteria decision strategy is proposed to find the most convenient algorithm. The analytical hierarchy process is used for multi-criteria decision. To the best of our knowledge, this is the first work to select the proper machine learning algorithm for an indoor positioning system using multi-criteria decision strategy.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3701
Author(s):  
Ju-Hyeon Seong ◽  
Soo-Hwan Lee ◽  
Won-Yeol Kim ◽  
Dong-Hoan Seo

Wi-Fi round-trip timing (RTT) was applied to indoor positioning systems based on distance estimation. RTT has a higher reception instability than the received signal strength indicator (RSSI)-based fingerprint in non-line-of-sight (NLOS) environments with many obstacles, resulting in large positioning errors due to multipath fading. To solve these problems, in this paper, we propose high-precision RTT-based indoor positioning system using an RTT compensation distance network (RCDN) and a region proposal network (RPN). The proposed method consists of a CNN-based RCDN for improving the prediction accuracy and learning rate of the received distances and a recurrent neural network-based RPN for real-time positioning, implemented in an end-to-end manner. The proposed RCDN collects and corrects a stable and reliable distance prediction value from each RTT transmitter by applying a scanning step to increase the reception rate of the TOF-based RTT with unstable reception. In addition, the user location is derived using the fingerprint-based location determination method through the RPN in which division processing is applied to the distances of the RTT corrected in the RCDN using the characteristics of the fast-sampling period.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 83
Author(s):  
Keiichi Zempo ◽  
Taiga Arai ◽  
Takuya Aoki ◽  
Yukihiko Okada

To evaluate and improve the value of a service, it is important to measure not only the outcomes, but also the process of the service. Value co-creation (VCC) is not limited to outcomes, especially in interpersonal services based on interactions between actors. In this paper, a sensing framework for a VCC process in retail stores is proposed by improving an environment recognition based indoor positioning system with high positioning performance in a metal shelf environment. The conventional indoor positioning systems use radio waves; therefore, errors are caused by reflection, absorption, and interference from metal shelves. An improvement in positioning performance was achieved in the proposed method by using an IR (infrared) slit and IR light, which avoids such errors. The system was designed to recognize many and unspecified people based on the environment recognition method that the receivers had installed, in the service environment. In addition, sensor networking was also conducted by adding a function to transmit payload and identification simultaneously to the beacons that were attached to positioning objects. The effectiveness of the proposed method was verified by installing it not only in an experimental environment with ideal conditions, but posteriorly, the system was tested in real conditions, in a retail store. In our experimental setup, in a comparison with equal element numbers, positioning identification was possible within an error of 96.2 mm in a static environment in contrast to the radio wave based method where an average positioning error of approximately 648 mm was measured using the radio wave based method (Bluetooth low-energy fingerprinting technique). Moreover, when multiple beacons were used simultaneously in our system within the measurement range of one receiver, the appropriate setting of the pulse interval and jitter rate was implemented by simulation. Additionally, it was confirmed that, in a real scenario, it is possible to measure the changes in movement and positional relationships between people. This result shows the feasibility of measuring and evaluating the VCC process in retail stores, although it was difficult to measure the interaction between actors.


2019 ◽  
Vol 9 (6) ◽  
pp. 1048 ◽  
Author(s):  
Huy Tran ◽  
Cheolkeun Ha

Recently, indoor positioning systems have attracted a great deal of research attention, as they have a variety of applications in the fields of science and industry. In this study, we propose an innovative and easily implemented solution for indoor positioning. The solution is based on an indoor visible light positioning system and dual-function machine learning (ML) algorithms. Our solution increases positioning accuracy under the negative effect of multipath reflections and decreases the computational time for ML algorithms. Initially, we perform a noise reduction process to eliminate low-intensity reflective signals and minimize noise. Then, we divide the floor of the room into two separate areas using the ML classification function. This significantly reduces the computational time and partially improves the positioning accuracy of our system. Finally, the regression function of those ML algorithms is applied to predict the location of the optical receiver. By using extensive computer simulations, we have demonstrated that the execution time required by certain dual-function algorithms to determine indoor positioning is decreased after area division and noise reduction have been applied. In the best case, the proposed solution took 78.26% less time and provided a 52.55% improvement in positioning accuracy.


Author(s):  
Michael Adeyeye Oshin ◽  
Nobaene Sehloho

With many different studies showing a growing demand for the development of indoor positioning systems, numerous positioning and tracking methods and tools are available for which can be used for mobile devices. Therefore, an interest is more on development of indoor positioning and tracking systems that are accurate and effective. Presented and proposed in this work, is an indoor positioning system. As opposed to an Ad-hoc Positioning System (APS), it uses a Wireless Mesh Network (WMN). The system makes use of an already existing Wi-Fi infrastructure technology. Moreover, the approach tests the positioning of a node with its neighbours in a mesh network using multi-hopping functionality. The positioning measurements used were the ICMP echos, RSSI and RTS/CTS requests and responses. The positioning method used was the trilateral technique, in combination with the idea of the fingerprinting method. Through research and experimentation, this study developed a system which shows potential as a positioning system with an error of about 2 m to 3 m. The hybridisation of the method proves an enhancement in the system though improvements are still required.


2019 ◽  
Vol 9 (18) ◽  
pp. 3665 ◽  
Author(s):  
Ahmet Çağdaş Seçkin ◽  
Aysun Coşkun

Wi-Fi-based indoor positioning offers significant opportunities for numerous applications. Examining the Wi-Fi positioning systems, it was observed that hundreds of variables were used even when variable reduction was applied. This reveals a structure that is difficult to repeat and is far from producing a common solution for real-life applications. It aims to create a common and standardized dataset for indoor positioning and localization and present a system that can perform estimations using this dataset. To that end, machine learning (ML) methods are compared and the results of successful methods with hierarchical inclusion are then investigated. Further, new features are generated according to the measurement point obtained from the dataset. Subsequently, learning models are selected according to the performance metrics for the estimation of location and position. These learning models are then fused hierarchically using deductive reasoning. Using the proposed method, estimation of location and position has proved to be more successful by using fewer variables than the current studies. This paper, thus, identifies a lack of applicability present in the research community and solves it using the proposed method. It suggests that the proposed method results in a significant improvement for the estimation of floor and longitude.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qiang Liu ◽  
XiuJun Bai ◽  
Xingli Gan ◽  
Shan Yang

In recent years, indoor positioning systems (IPS) are increasingly very important for a smart factory, and the Lora positioning system based on round-trip time (RTT) has been developed. This paper introduces the ranging characterization, RTT measurement, and position estimation method. In particular, a particle filter localization method-aided Lora pseudorange fitting correction is designed to solve the problem of indoor positioning; the cumulative distribution function (CDF) criteria are used to measure the quality of the estimated location in comparison to the ground truth location; when the positioning error on the x -axis threshold is 0.2 m and 0.6 m, the CDF with pseudorange correction is 61% and 99%, which are higher than the 32% and 85% without pseudorange correction. When the positioning error on the y -axis threshold is 0.2 m and 0.6 m, the CDF with pseudorange correction is 71% and 99.9%, which are higher than the 52% and 94.8% without pseudorange correction.


2021 ◽  
Author(s):  
Ryan Murari

With the increasing widespread of sensor technology, new solutions for indoor positioning systems are continuously being developed and with them, new services requiring accurate positioning data have seen a great rise in popularity. In this thesis, a new design technique and deployment methodology for an indoor positioning system using neural networks is proposed to offer more flexibility and simplicity in the development of such a system which is currently very context-bound. The usage of battery-powered tags implies also that systems should not require excessive power consumption and the large number of targets to position requires a method that is not only accurate but also scalable. The proposed positioning system utilizes a small “swarm” of neural networks tasked to position targets based on distance measurements from Ultrawide Band sensors and requires shorter fingerprint collection campaigns and enables more flexibility in system deployment and alterations. Instead of relying solely on real data collected on the field for the training of neural networks, synthetic data is used for an initial training phase. Together, these propositions allow flexibility in terms of adding, removing or altering positions of reference nodes and simplifies offline deployment operations of an indoor positioning system. This thesis presents a system operating in a laboratory-workshop environment capable of good positioning accuracies and maintains robust performances in poor signal propagation.


2021 ◽  
Author(s):  
Ryan Murari

With the increasing widespread of sensor technology, new solutions for indoor positioning systems are continuously being developed and with them, new services requiring accurate positioning data have seen a great rise in popularity. In this thesis, a new design technique and deployment methodology for an indoor positioning system using neural networks is proposed to offer more flexibility and simplicity in the development of such a system which is currently very context-bound. The usage of battery-powered tags implies also that systems should not require excessive power consumption and the large number of targets to position requires a method that is not only accurate but also scalable. The proposed positioning system utilizes a small “swarm” of neural networks tasked to position targets based on distance measurements from Ultrawide Band sensors and requires shorter fingerprint collection campaigns and enables more flexibility in system deployment and alterations. Instead of relying solely on real data collected on the field for the training of neural networks, synthetic data is used for an initial training phase. Together, these propositions allow flexibility in terms of adding, removing or altering positions of reference nodes and simplifies offline deployment operations of an indoor positioning system. This thesis presents a system operating in a laboratory-workshop environment capable of good positioning accuracies and maintains robust performances in poor signal propagation.


Sign in / Sign up

Export Citation Format

Share Document