Recent advances in porous semi-conductor technologies for microelectronics and energy storage applications

Author(s):  
G. Gautier ◽  
J. Billoue
2020 ◽  
pp. 100733
Author(s):  
Tolendra Kshetri ◽  
Duy Thanh Tran ◽  
Huu Tuan Le ◽  
Dinh Chuong Nguyen ◽  
Hien Van Hoa ◽  
...  

2017 ◽  
Vol 41 (20) ◽  
pp. 11456-11470 ◽  
Author(s):  
Yong-Ping Gao ◽  
Zi-Bo Zhai ◽  
Ke-Jing Huang ◽  
Ying-Ying Zhang

Recent advances in the application of biomass-derived carbon materials in batteries and supercapacitors.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1161 ◽  
Author(s):  
Hee-Je Kim ◽  
TNV Krishna ◽  
Kamran Zeb ◽  
Vinodh Rajangam ◽  
Chandu V. V. Muralee Gopi ◽  
...  

In the context of constant growth in the utilization of the Li-ion batteries, there was a great surge in the quest for electrode materials and predominant usage that lead to the retiring of Li-ion batteries. This review focuses on the recent advances in the anode and cathode materials for the next-generation Li-ion batteries. To achieve higher power and energy demands of Li-ion batteries in future energy storage applications, the selection of the electrode materials plays a crucial role. The electrode materials, such as carbon-based, semiconductor/metal, metal oxides/nitrides/phosphides/sulfides, determine appreciable properties of Li-ion batteries such as greater specific surface area, a minimal distance of diffusion, and higher conductivity. Various classifications of the anode materials such as the intercalation/de- intercalation, alloy/de-alloy, and various conversion materials are illustrated lucidly. Further, the cathode materials, such as nickel-rich LiNixCoyMnzO2 (NCM), were discussed. NCM members such as NCM 333, NCM 523 that enabled to advance for NCM622 and NCM81are reported. The nanostructured materials bridged the gap in the realization of next-generation Li-ion batteries. Li-ion batteries’ electrode nanostructure synthesis, performance, and reaction mechanisms were considered with great concern. The serious effects of Li-ion batteries disposal need to be cut significantly to reduce the detrimental effect on the environment. Hence, the recycling of spent Li-ion batteries has gained much attention in recent years. Various recycling techniques and their effect on the electroactive materials are illustrated. The key areas covered in this review are anode and cathode materials and recent advances along with their recycling techniques. In light of crucial points covered in this review, it constitutes a suitable reference for engineers, researchers, and designers in energy storage applications.


Small ◽  
2018 ◽  
pp. 1803858 ◽  
Author(s):  
Zhijie Wang ◽  
Hong Gao ◽  
Qing Zhang ◽  
Yuqing Liu ◽  
Jun Chen ◽  
...  

2021 ◽  
Vol 286 ◽  
pp. 116431
Author(s):  
Przemyslaw Maziarka ◽  
Peter Sommersacher ◽  
Xia Wang ◽  
Norbert Kienzl ◽  
Stefan Retschitzegger ◽  
...  

Author(s):  
Zhiqiang Luo ◽  
Silin Zheng ◽  
Shuo Zhao ◽  
Xin Jiao ◽  
Zongshuai Gong ◽  
...  

Benzoquinone with high theoretical capacity is anchored on N-plasma engraved porous carbon as a desirable cathode for rechargeable aqueous Zn-ion batteries. Such batteries display tremendous potential in large-scale energy storage applications.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27801-27811
Author(s):  
M. Vandana ◽  
Y. S. Nagaraju ◽  
H. Ganesh ◽  
S. Veeresh ◽  
H. Vijeth ◽  
...  

Representation of the synthesis steps of SnO2QDs/GO/PPY ternary composites and SnO2QDs/GO/PPY//GO/charcoal asymmetric supercapacitor device.


2013 ◽  
Vol 41 (6) ◽  
pp. 569-585 ◽  
Author(s):  
N. Benyahia ◽  
T. Rekioua ◽  
N. Benamrouche ◽  
A. Bousbaine

Sign in / Sign up

Export Citation Format

Share Document