An integrated source coding and congestion control framework for video streaming in the Internet

Author(s):  
Kang-Won Lee ◽  
R. Puri ◽  
Tae-eun Kim ◽  
K. Ramchandran ◽  
V. Bharghavan
2001 ◽  
Vol 3 (1) ◽  
pp. 18-32 ◽  
Author(s):  
R. Puri ◽  
Kang-Won Lee ◽  
K. Ramchandran ◽  
V. Bharghavan

Author(s):  
Sanjay Agal ◽  
Priyank K. Gokani

The increasing popularity of streaming video is a cause of concern for the stability of the internet because most streaming video content is currently delivered via UDP without any end-to-end congestion control. Since the internet relies on end systems implementing transmit rate regulation, there has recently been significant interest in congestion control mechanisms that are both fair to TCP and effective in delivering real-time streams. Streaming video over the internet requires dealing with bandwidth and delay that vary over time. Many video streaming applications address this problem by adapting the quality of the scalable video. But it produces poor quality service, and sending data on this channel results in buffering time. To trounce these issues, this paper proposed optimized bandwidth estimation for adaptive video streaming systems using the WLBWO algorithm. Originally, the input video is compressed by using the UHE algorithm. Next, the system proposes a KEECC to securely transfer the data. Then, the encrypted data is sent to the receiver via a multipath channel. Before sending the data to the receiver, the bandwidth is estimated by using the WLBWO. Finally, the inverse process is performed. Extensive experimental results showed the effectiveness of the proposed system than conventional methods.


2010 ◽  
Vol 6 (3) ◽  
pp. 259-280 ◽  
Author(s):  
N. Qadri ◽  
M. Altaf ◽  
M. Fleury ◽  
M. Ghanbari

Video communication within a Vehicular Ad Hoc Network (VANET) has the potential to be of considerable benefit in an urban emergency, as it allows emergency vehicles approaching the scene to better understand the nature of the emergency. However, the lack of centralized routing and network resource management within a VANET is an impediment to video streaming. To overcome these problems the paper pioneers source-coding techniques for VANET video streaming. The paper firstly investigates two practical multiple-path schemes, Video Redundancy Coding (VRC) and the H.264/AVC codec's redundant frames. The VRC scheme is reinforced by gradual decoder refresh to improve the delivered video quality. Evaluation shows that multiple-path 'redundant frames' achieves acceptable video quality at some destinations, whereas VRC is insufficient. The paper also demonstrates a third source coding scheme, single-path streaming with Flexible Macroblock Ordering, which is also capable of delivery of reasonable quality video. Therefore, video communication between vehicles is indeed shown to be feasible in an urban emergency if the suitable source coding techniques are selected.


Sign in / Sign up

Export Citation Format

Share Document