On-line real time feature extraction of ECG signal: Recent advances & survey

Author(s):  
S. M. Walke ◽  
R. S. Deshpande
2021 ◽  
Vol 14 (5) ◽  
pp. 799-812
Author(s):  
Cheng Chen ◽  
Jun Yang ◽  
Mian Lu ◽  
Taize Wang ◽  
Zhao Zheng ◽  
...  

On-line decision augmentation (OLDA) has been considered as a promising paradigm for real-time decision making powered by Artificial Intelligence (AI). OLDA has been widely used in many applications such as real-time fraud detection, personalized recommendation, etc. On-line inference puts real-time features extracted from multiple time windows through a pre-trained model to evaluate new data to support decision making. Feature extraction is usually the most time-consuming operation in many OLDA data pipelines. In this work, we started by studying how existing in-memory databases can be leveraged to efficiently support such real-time feature extractions. However, we found that existing in-memory databases cost hundreds or even thousands of milliseconds. This is unacceptable for OLDA applications with strict real-time constraints. We therefore propose FEDB ( <u>F</u> eature <u>E</u> ngineering <u>D</u> ata <u>b</u> ase), a distributed in-memory database system designed to efficiently support on-line feature extraction. Our experimental results show that FEDB can be one to two orders of magnitude faster than the state-of-the-art in-memory databases on real-time feature extraction. Furthermore, we explore the use of the Intel Optane DC Persistent Memory Module (PMEM) to make FEDB more cost-effective. When comparing the proposed PMEM-optimized persistent skiplist to the FEDB using DRAM+SSD, PMEM-based FEDB can shorten the tail latency up to 19.7%, reduce the recovery time up to 99.7%, and save up to 58.4% total cost of a real OLDA pipeline.


1994 ◽  
Vol 33 (01) ◽  
pp. 60-63 ◽  
Author(s):  
E. J. Manders ◽  
D. P. Lindstrom ◽  
B. M. Dawant

Abstract:On-line intelligent monitoring, diagnosis, and control of dynamic systems such as patients in intensive care units necessitates the context-dependent acquisition, processing, analysis, and interpretation of large amounts of possibly noisy and incomplete data. The dynamic nature of the process also requires a continuous evaluation and adaptation of the monitoring strategy to respond to changes both in the monitored patient and in the monitoring equipment. Moreover, real-time constraints may imply data losses, the importance of which has to be minimized. This paper presents a computer architecture designed to accomplish these tasks. Its main components are a model and a data abstraction module. The model provides the system with a monitoring context related to the patient status. The data abstraction module relies on that information to adapt the monitoring strategy and provide the model with the necessary information. This paper focuses on the data abstraction module and its interaction with the model.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Sign in / Sign up

Export Citation Format

Share Document