Research on composite soft switching single phase and three phase inverters

Author(s):  
Kong Jianhong ◽  
Hu Lei ◽  
He Xiangning
2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Chin-Tsang Hsieh

This study primarily focuses on the design of an intelligent three-phase soft-switching mode rectifier (SSMR). Firstly, the small-signal dynamic model of a single-phase SSMR is derived together with the design of its controller. Then, the developed single-phase SSMR is connected to form an intelligent three-phase SSMR. When any of the phase modules in the proposed intelligent three-phase SSMR experiences a fault, it can continue to supply power automatically under reduced load capacity while still maintaining good power quality characteristics. Finally, some simulation results were used to demonstrate the effectiveness of the proposed intelligent three-phase SSMR design.


2012 ◽  
Vol 263-266 ◽  
pp. 803-808
Author(s):  
Hui Cai ◽  
Hong Yan ◽  
Wei Min Chen ◽  
Qing Li

To eliminate the negative effects caused by three-phase unbalanced distribution, a novel soft-switching system based on single-phase inverter is proposed. The system achieves three-phase equilibrium distribution by adjusting the power supply of the electric equipments. This paper presents a track strategy named regulating frequency to promise no impulse current, which means regulating the output frequency of the inverter to make the output voltage of the inverter synchronize with the grid voltage. Firstly, make the output voltage of the inverter synchronize with the voltage of original access phase, then switch the electric equipment to the inverter. Secondly, make the output voltage of the inverter synchronize with the voltage of alternative access phase, then switch the electric equipment to the alternative access phase to accomplish the soft-switching. MATLAB software and experiment are used to carry out verification for this system. The result shows that the impulse current is practically zero when the electric equipments are switching. The system achieves soft-switching.


2020 ◽  
Vol 140 (12) ◽  
pp. 893-904
Author(s):  
Wataru Kodaka ◽  
Satoshi Ogasawara ◽  
Koji Orikawa ◽  
Masatsugu Takemoto ◽  
Hiroyuki Tokusaki

2015 ◽  
Vol 135 (3) ◽  
pp. 168-180 ◽  
Author(s):  
Ryota Mizutani ◽  
Hirotaka Koizumi ◽  
Kentaro Hirose ◽  
Kazunari Ishibashi

Sign in / Sign up

Export Citation Format

Share Document