scholarly journals Mathematical Modeling and Fault Tolerance Control for a Three-Phase Soft-Switching Mode Rectifier

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kuei-Hsiang Chao ◽  
Chin-Tsang Hsieh

This study primarily focuses on the design of an intelligent three-phase soft-switching mode rectifier (SSMR). Firstly, the small-signal dynamic model of a single-phase SSMR is derived together with the design of its controller. Then, the developed single-phase SSMR is connected to form an intelligent three-phase SSMR. When any of the phase modules in the proposed intelligent three-phase SSMR experiences a fault, it can continue to supply power automatically under reduced load capacity while still maintaining good power quality characteristics. Finally, some simulation results were used to demonstrate the effectiveness of the proposed intelligent three-phase SSMR design.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 170496-170506
Author(s):  
Antreas Naziris ◽  
Airan Frances ◽  
Rafael Asensi ◽  
Javier Uceda

2017 ◽  
Vol 66 (4) ◽  
pp. 731-743
Author(s):  
Hanuman Prasad ◽  
Tanmoy Maity

Abstract This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA)-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL), making it versatile and moveable. Hardware-in-the-loop (HIL) simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.


2013 ◽  
Vol 418 ◽  
pp. 269-272
Author(s):  
Rong Hui Liu ◽  
Ai Qang Pan ◽  
Hai Bo Wang ◽  
Xiu Yang

In this paper, the characteristics of AC/DC converter under single-phase voltage sags and three-phase voltage sags are simulated with Matlab emulator. The simulation results show that effects on rectifier equipment under three-phase voltage sags are more serious than those under single-phase voltage sags. The flat wave capacitance plays an important role in voltage sensitivity of sensitive loads. In practice, the capacitance of flat wave capacitor is chosen according to the power supply and load requirements so as to realize the best balance of performance and price.


2012 ◽  
Vol 588-589 ◽  
pp. 864-867
Author(s):  
Xue Hai Cui

This paper introduces the the basic principle of ip-iq harmonic detection algorithm and puts forward a method of harmonic detection for the single-phase circuit. This method eliminates the three-phase to two-phase and two-phase to the three-phase coordinate transformation, thus effectively reduces the computation ; moreover it has the advantages of good real-time performance and makes the digital control easy. Matlab simulation results show that this method can detect the harmonic component of single-phase and three-phase current accurately and in real-time.


2012 ◽  
Vol 263-266 ◽  
pp. 803-808
Author(s):  
Hui Cai ◽  
Hong Yan ◽  
Wei Min Chen ◽  
Qing Li

To eliminate the negative effects caused by three-phase unbalanced distribution, a novel soft-switching system based on single-phase inverter is proposed. The system achieves three-phase equilibrium distribution by adjusting the power supply of the electric equipments. This paper presents a track strategy named regulating frequency to promise no impulse current, which means regulating the output frequency of the inverter to make the output voltage of the inverter synchronize with the grid voltage. Firstly, make the output voltage of the inverter synchronize with the voltage of original access phase, then switch the electric equipment to the inverter. Secondly, make the output voltage of the inverter synchronize with the voltage of alternative access phase, then switch the electric equipment to the alternative access phase to accomplish the soft-switching. MATLAB software and experiment are used to carry out verification for this system. The result shows that the impulse current is practically zero when the electric equipments are switching. The system achieves soft-switching.


Author(s):  
Mohammad Jannati ◽  
Tole Sutikno ◽  
Nik Rumzi Nik Idris ◽  
Mohd Junaidi Abdul Aziz

<p>This paper proposes a novel method for speed control of three-phase Induction Motor (IM) which can be used for both healthy three-phase IM and three-phase IM under open-phase fault. The proposed fault-tolerant control system is derived from conventional Field-Oriented Control (FOC) algorithm with minor changes on it. The presented drive system is based on using an appropriate transformation matrix for the stator current variables. The presented method in this paper can be also used for speed control of single-phase IMs with two windings. The feasibility of the proposed strategy is verified by simulation results.</p>


Sign in / Sign up

Export Citation Format

Share Document