Fault tolerant adaptive mission planning with semantic knowledge representation for autonomous underwater vehicles

Author(s):  
P. Patron ◽  
E. Miguelanez ◽  
Y.R. Petillot ◽  
D.M. Lane
2011 ◽  
Vol 23 (5) ◽  
pp. 759-773 ◽  
Author(s):  
Emilio Miguelanez ◽  
Pedro Patron ◽  
Keith E. Brown ◽  
Yvan R. Petillot ◽  
David M. Lane

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1816
Author(s):  
Wenjin Wang ◽  
Ying Chen ◽  
Yingkai Xia ◽  
Guohua Xu ◽  
Wei Zhang ◽  
...  

The X-rudder concept has been applied to more and more autonomous underwater vehicles (AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder AUV (hereinafter abbreviated as xAUV), a fault-tolerant steering prototype system which can realize dynamics control, autonomous rudder fault detection and fault-tolerant control is presented in this paper. The steering prototype system is deployed on a verification platform, an xAUV, in which the monitor software is developed based on the factory method and the onboard software is developed based on the finite state machine (FSM). Dual-loop increment feedback control (DIFC) is first introduced to obtain smooth virtual rudder commands considering actuator’s limitations. Then the virtual rudder commands are transformed into X-rudder commands based on the mapping theory. In rudder fault diagnosis, an optimized particle filter is proposed for estimating rudder effect deduction, with proposal distribution derived from unscented Kalman filter (UKF). Then the fault type can be determined by analyzing indicators related to the deduction. Fault-tolerant control is addressed by dealing with nonlinear programming (NLP) problem, where minimization of allocation errors and control efforts are set as the optimization objectives, and rudder failure, saturation and actuators limitations are considered as constraints. The fixed-point iteration method is utilized to solve this optimization problem. Many field tests have been conducted in towing tank. The experimental results demonstrate that the proposed steering prototype system is able to detect rudder faults and is robust against rudder failure.


2016 ◽  
Vol 70 (1) ◽  
pp. 184-204 ◽  
Author(s):  
Mingjun Zhang ◽  
Xing Liu ◽  
Fei Wang

A region tracking fault tolerant control approach based on backstepping technique is proposed for Autonomous Underwater Vehicles (AUV). The proposed approach aims at driving tracking error to reach into the desired region in presence of ocean current disturbance, modelling uncertainty, unknown thruster faults and thruster amplitude and rate saturation constraints. At first, a type of piecewise and differential Lyapunov function is constructed to achieve region tracking control in the frame of backstepping technique. Then, the paper analyses and acquires the bound structures of the lumped uncertainty (including ocean current disturbance and model uncertainty) and the variation of thruster distribution matrix caused by unknown thruster faults, respectively. An adaptive technique is used to estimate the unknown coefficients in the above bound structures. In addition, an adaptive adjustment scheme for the desired trajectory is developed to achieve region tracking control with thruster amplitude and rate saturation constraints. The stability of the closed-loop system is analysed based on Barbalat's lemma. Finally, simulations and pool-experiments are presented to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document