Design of single-operator-multi-robot teleoperation systems with random communication delay

Author(s):  
Yunyi Jia ◽  
Ning Xi ◽  
J. Buether
2002 ◽  
Vol 11 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Nak Young Chong ◽  
Shun'ichi Kawabata ◽  
Kohtaro Ohba ◽  
Tetsuo Kotoku ◽  
Kiyoshi Komoriya ◽  
...  

In this paper, various coordinated control schemes are explored in Multioperatormultirobot (MOMR) teleoperation through a communication network with time delay. Over the past decades, problems and several notable results have been reported mainly in the Single-Operator–Single-Robot (SOSR) teleoperation system. Recently, the need for cooperation has rapidly emerged in many possible applications such as plant maintenance, construction, and surgery, because multirobot cooperation would have a significant advantage over a single robot in such cases. Thus, there is a growing interest in the control of multirobot systems in remote teleoperation, too. However, the time delay over the network would pose a more difficult problem to MOMR teleoperation systems and seriously affect their performance. In this work, our recent efforts devoted to the coordinated control of the MOMR teleoperation is described. First, we build a virtual experimental test bed to investigate the cooperation between two telerobots in remote environments. Then, different coordinated control aids are proposed to cope with collisions arising from delayed visual feedback from the remote location. To verify the validity of the proposed schemes, we perform extensive simulations of various planar rearrangement tasks employing local and remote graphics simulators over an ethernet LAN subject to a simulated communication delay.


2013 ◽  
Vol 62 (11) ◽  
pp. 2943-2953 ◽  
Author(s):  
Shafiqul Islam ◽  
Xiaoping P. Liu ◽  
Abdulmotaleb El Saddik

2019 ◽  
pp. 337-351
Author(s):  
Yunyi Jia

Multiple robots can be tele-operated by a single operator to accomplish complicated tasks such as formation and co-transportation. Such systems are challenging because one operator needs to simultaneously tele-control multiple homogeneous and even heterogeneous robots. Besides, the communication between the operator and multi-robot system and the communication among the multiple robots are always subject to some communication constraints such as time delays. This chapter introduces a novel non-time based method to realize the single-operator-multi-robot (SOMR) teleoperation system with random communication delays. The problem is divided into a typical teleoperation problem and a multi-robot coordination problem. A non-time variable is taken as the system reference instead of the time to model and drive the system such that the random communication delays and some expected events could be automatically handled. Experiments implemented on a multi-robot system illustrate the effectiveness and advantages of the method.


Sign in / Sign up

Export Citation Format

Share Document