Multioperator Teleoperation of Multirobot Systems with Time Delay: Part I—Aids for Collision-Free Control

2002 ◽  
Vol 11 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Nak Young Chong ◽  
Shun'ichi Kawabata ◽  
Kohtaro Ohba ◽  
Tetsuo Kotoku ◽  
Kiyoshi Komoriya ◽  
...  

In this paper, various coordinated control schemes are explored in Multioperatormultirobot (MOMR) teleoperation through a communication network with time delay. Over the past decades, problems and several notable results have been reported mainly in the Single-Operator–Single-Robot (SOSR) teleoperation system. Recently, the need for cooperation has rapidly emerged in many possible applications such as plant maintenance, construction, and surgery, because multirobot cooperation would have a significant advantage over a single robot in such cases. Thus, there is a growing interest in the control of multirobot systems in remote teleoperation, too. However, the time delay over the network would pose a more difficult problem to MOMR teleoperation systems and seriously affect their performance. In this work, our recent efforts devoted to the coordinated control of the MOMR teleoperation is described. First, we build a virtual experimental test bed to investigate the cooperation between two telerobots in remote environments. Then, different coordinated control aids are proposed to cope with collisions arising from delayed visual feedback from the remote location. To verify the validity of the proposed schemes, we perform extensive simulations of various planar rearrangement tasks employing local and remote graphics simulators over an ethernet LAN subject to a simulated communication delay.

2002 ◽  
Vol 11 (3) ◽  
pp. 292-303 ◽  
Author(s):  
Nak Young Chong ◽  
Tetsuo Kotoku ◽  
Kohtaro Ohba ◽  
Hisayuki Sasaki ◽  
Kiyoshi Komoriya ◽  
...  

The Mechanical Engineering Laboratory (MEL) 1 has been developing coordinated control technologies for multi-telerobot cooperation in a common environment remotely controlled from multiple operators physically distant from each other. Previously, we learned about how the transmission delay over the network deteriorates the performance of telerobots through simulations. To overcome the operator's delayed visual perception arising from network throughput limitations, we have suggested several coordinated control aids at the local operator site. The testbed facilitates experiments with physical robots for validation beyond simulation. This paper mainly discusses the details of the testbed and investigates the use of an online predictive simulator to assist the operator in coping with time delay over the network. Practically, a common data relay station is suggested to reduce the travel distance of the master data over the network and enable multirobot predictive simulation at one's master station. Operators control their master to get their telerobot to cooperate with the counterpart telerobot using the predictive simulator as well as video image feedback. Specifically, exploiting the audio-visual resources of the simulator, operators can detect a priori the possibility of collision and coordinate conflicting motions between telerobots. We have demonstrated an object rearrangement task by two telerobots and two operators via an ethernet LAN that is subject to simulated delays and evaluated the validity of the online predictive simulator in Multioperator-Multirobot (MOMR) tele-cooperation. 1 On April 1, 2001, MEL merged into the National Institute of Advanced Industrial Science and Technology (AIST).


2015 ◽  
Vol 20 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Shafiqul Islam ◽  
P. X. Liu ◽  
Abdulmotaleb El Saddik ◽  
Yubin B. Yang

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Chia-Wei Lin ◽  
Tzuu-Hseng S. Li ◽  
Chung-Cheng Chen

The paper presents a novel feedback linearization controller of nonlinear multiinput multioutput time-delay large-scale systems to obtain both the tracking and almost disturbance decoupling (ADD) performances. The significant contribution of this paper is to build up a control law such that the overall closed-loop system is stable for given initial condition and bounded tracking trajectory with the input-to-state-stability characteristic and almost disturbance decoupling performance. We have simulated the two-inverted-pendulum system coupled by a spring for networked control systems which has been used as a test bed for the study of decentralized control of large-scale systems.


2019 ◽  
Vol 111 ◽  
pp. 06016
Author(s):  
Nikolajs Bogdanovs ◽  
Romualds Beļinskis ◽  
Ernests Petersons ◽  
Andris Krūmiņš ◽  
Artūrs Brahmanis

The analysis of a problem of development of control systems for objects with big time delay is carried out in this work. For such objects it is difficult to provide high-quality control, because the control is carried on the last status of object’s output. The main setup methods of PID regulators have been examined. Based on this analysis the technique of complete synthesis of the regulator of higher level is given in order to regulate building’s heating system. This work offers a new method of object’s control with distributed delay. As the test bed for the offered structure of control the valve of hot water supply in a heat-node is used. Using the test bed the stability of the system with time delay have been studied, which is controlled by the PID-regulator assisted by Smith Predictor used to compensate the dead time.


1992 ◽  
Vol 36 (1) ◽  
pp. 126-130 ◽  
Author(s):  
Joseph P. Hale

A study was conducted to assess the capabilities and limitations of the DataGlove, a lightweight glove input device that can output signals in real time based on hand shape, orientation, and movement. The DataGlove was used as an input device to control the Proto-Flight Manipulator Arm (PFMA), a large telerobotic arm with an 8-foot reach. Twelve volunteers (six males and six females) participated in a 2×3(×2) full-factorial experiment in a simple retraction, slewing, and insertion task. Two within-subjects variables, time delay (0,1, and 2 seconds) and PFMA wrist flexibility (rigid/flexible) were manipulated. Gender served as a blocking variable. Retraction, insertion, and slew times, as well as total task time were collected as the dependent variables. An analysis of variance found a main effect of time delay for slewing and total task times. A post hoc Newman-Keuls pairwise comparison of the means was performed for the significant effects. Slew times with no time delay were significantly faster than slew times with either 1- or 2-second time delays. Total task time with no time delay was significantly faster than total task time with a 2-second time delay. PFMA wrist flexibility had no significant main effect on the ability of the subject to accurately and effectively operate the PFMA with the DataGlove. It was concluded that the DataGlove is a legitimate teleoperations input device that provides a natural, intuitive user interface and should be considered in future trades in teleoperation systems' designs.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 103 ◽  
Author(s):  
Liansong Xiong ◽  
Yujun Li ◽  
Yixin Zhu ◽  
Ping Yang ◽  
Zhirong Xu

1983 ◽  
Vol 38 (2) ◽  
pp. 433-447 ◽  
Author(s):  
R. D. HOCKEN ◽  
S. V. SALEHI ◽  
J. E. MARSHALL
Keyword(s):  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Youjian Zhang ◽  
Wenjun Yan ◽  
Qiang Yang

This paper addresses the synchronization problem for a class of complex networks with time-varying topology as well as nonidentical nodes and coupling time-delay and presents two efficient control schemes to synchronize the network onto any given smooth goal dynamics. The time-varying network is supposed to be bounded within a certain range, which cannot be controlled. Through the adoption of hybrid control with linear static feedback control and adaptive feedback control, two control schemes are derived to guarantee such complex networks to reach the global synchronization. Finally, a set of numerical simulation experiments are carried out and the results demonstrate the effectiveness of the suggested control solutions.


Sign in / Sign up

Export Citation Format

Share Document