Energetics of bio-inspired legged robot locomotion with elastically-suspended loads

Author(s):  
Jeffrey Ackerman ◽  
Justin Seipel
Author(s):  
Jeffrey Ackerman ◽  
Xingye Da ◽  
Justin Seipel

Elastically suspending a load from humans and animals can increase the energy efficiency of legged locomotion and load carrying. Similarly, elastically-suspended loads have the potential to increase the energy efficiency of legged robot locomotion. External loads and the inherent mass of a legged robot, such as batteries, electronics, and fuel, can be elastically-suspended from the robot chassis with a passive compliant suspension system, reducing the energetic cost of locomotion. In prior work, we developed a simple model to examine the effect of elastically-suspended loads on the energy cost of locomotion from first principles. In this paper, we present experimental results showing the energy cost of locomotion for a simple hexapod robot over a range of suspension stiffness values. Elastically-suspended loads were shown to reduce the energy cost of locomotion by up to 20% versus a rigidly-attached load. We compare the experimental results to the theoretical results predicted by the simple model.


Author(s):  
Xingye Da ◽  
Jeffrey Ackerman ◽  
Justin Seipel

Elastically suspended loads can reduce the energetic cost and peak forces of legged robot locomotion. However, legged locomotion frequently exhibits multiple frequency modes due to variable leg contact times, body pitch and roll, and transient locomotion dynamics. We used a simple hexapod robot to investigate the effect of multiple frequency components on the energetic cost, dynamics, and peak forces of legged robot locomotion using a high-speed motion tracking system and the fast Fourier transform (FFT). The trajectories of the robot body and the suspended load revealed that the robot was excited by both a body pitching frequency and the primary locomotion frequency. Both frequency modes affected the dynamics of the legged robot as the natural frequency of the elastic load suspension was varied. When the natural frequency of the load suspension was reduced below the primary locomotion and body pitching frequencies, the robot consumed less average power with an elastically suspended load versus a rigidly attached load. To generalize the experimental results more broadly, a modified double-mass coupled-oscillator model with experimental parameters was shown to qualitatively predict the energetic cost and dynamics of legged robot locomotion with an elastically suspended load. The experimental results and the theoretical model could help researchers better understand locomotion with elastically suspended loads and design load suspension systems that are optimized to reduce the energetic cost and peak forces of legged locomotion.


1992 ◽  
Vol 4 (3) ◽  
pp. 356-365 ◽  
Author(s):  
Randall D. Beer ◽  
Hillel J. Chiel ◽  
Roger D. Quinn ◽  
Kenneth S. Espenschied ◽  
Patrik Larsson

We present fully distributed neural network architecture for controlling the locomotion of a hexapod robot. The design of this network is directly based on work on the neuroethology of insect locomotion. Previously, we demonstrated in simulation that this controller could generate a continuous range of statically stable insect-like gaits as the activity of a single command neuron was varied and that it was robust to a variety of lesions. We now report that the controller can be utilized to direct the locomotion of an actual six-legged robot, and that it exhibits a range of gaits and degree of robustness in the real world that is quite similar to that observed in simulation.


Author(s):  
Sylvain Bertrand ◽  
Inho Lee ◽  
Bhavyansh Mishra ◽  
Duncan Calvert ◽  
Jerry Pratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document