Proceedings Third Annual Conference on Intelligent Robotic Systems for Space Exploration

1991 ◽  
2021 ◽  
Author(s):  
Luís Lopes ◽  
Shashank Govindaraj ◽  
Wiebke Brinkmann ◽  
Simon Lacroix ◽  
Jakub Stelmachowski ◽  
...  

<p>The PRO-ACT project studies, designs and develops the establishment of a lunar base with the support of a multi-robotic platform, entailing different features, tasks and capabilities. The activities are inline with the preparation of the commercial exploitation of in-situ resources and planetary exploration research by assembling an ISRU (In-Situ Resource Utilisation) system tested in a lunar analogue setting. The vision of PRO-ACT is based on the extraction of oxygen from lunar regolith which serves as oxidizer for fuel and artificial atmosphere generation for habitats and 3D printing of relevant structures using regolith for construction purposes.</p><p>The main goal of PRO-ACT is to implement and demonstrate the cooperative capabilities of the multi-robot system in a Moon-like environment. PRO-ACT uses three robots: Veles - a six-wheeled rover; Mantis - a six-legged walking system; and a mobile gantry. The final demonstration tests are set for early 2021.</p><p>Work implementation for the final deployment on the lunar analogue comprises: 1) during simulations, the planned mission scenarios and functional tests of the sub-components are carried out, to gain results of the real systems as well as to check the function of the developed software on the involved robotic systems; 2) remote testing of the robotic elements are implemented with the goal to integrate the software developed in the project and develop the first functional tests of the robot systems with the implemented software, 3) onsite demonstration of the project in Bremen, Germany, in a lunar analogue setting. For this indoor lunar analogue environment it was decided to create and set up a testbed with regolith simulant for testing purposes. It will be possible to replicate realistic simulation conditions (eg. navigation, mobility, autonomy) as found in the moon, which are adequate to certify the project’s goals.</p><p>The final demonstration will be conducted in the Space Exploration Hall at DFKI in Bremen. During the project, it was decided to build a large test field (with an area of 48m²) in front of the crater in the Hall, which will be filled with granulate/simulant (fill level 20-30 cm) in order to carry out moonlike mission scenarios with the involved robotic systems. The challenge was to find the appropriate granulate: the choice fell on using sand from the Baltic sea with grain size of 0.1-1.0mm, with the majority in the larger fraction. This simulant presents both relevant geomorphological and space exploration lunar conditions that are necessary for the certification of PRO-ACT’s activities, while complying with necessary health regulations. Other considered options included EAC-1A, the European Astronaut Centre lunar regolith simulant 1, which is a special mixture of 0.2-1.0mm (65% 0.2-0.5mm and 35% 0.5-1.0mm), but this is very dusty and hazardous to health in enclosed rooms, such as the Space Exploration Hall. It was, therefore, disregarded due to health and safety conditions.</p><p>To keep lunar fidelity up to a maximum, the final demonstration setup will include, besides the referred simulant, boulders (~2m), slopes of different angles, the Hall’s crater, light/darkness conditions controlled by a light system and environmental dryness. </p>


Author(s):  
E.A. Dudorov ◽  
I.G. Sokhin

The exploration of the Moon and other planets of the Solar system involves a widespread use of robotic systems of various types and purposes. However, currently there is no generally accepted frame of reference for the effective application of different robotic systems for performing space exploration tasks. Based on the approach to the selection of priority robotic systems proposed by the authors, possible areas of their advanced application to support the implementation of the Russian lunar program are considered in this paper. Multi-criteria classification of space-based robotic systems, features of remote control of robots, and directions of work on the development of Russian robotic systems for the lunar program are also examined. The questions of necessity, possibility and validity of flight operations using space-based robotic systems are explored. The tasks of robots in the exploration of the Moon, which are divided into four phases: infrastructure, provision, operation and research, are considered. Key technologies of space robotics (electronics, mechanics, software, control), as well as related technologies at their intersection are presented. Three main areas of Roscosmos’ work on the development of technological, anthropomorphic and freight robots are presented. Conclusions on the implementation of plans for the exploration and use of the Moon are drawn.


2021 ◽  
pp. 123-131
Author(s):  
John Huria Nderitu

Modular Self-Reconfigurable Robotic (MSRR) schemes are a vital remedy for the developing demand in consumer products, automations and space exploration. The wider factor of usage and self-healing capacity are some of the influencing characteristics of robot for actual-wide application whereas segmental robotics provide an effective remedy with respect to traditional robotics. Researchers have now noted different forms of application and prototyped different systems of robotics whereas concentrating on constraints such as homogeneity, configurability, energy consumption and form factor. Diversified condition of various segmental robotic remedies projected for actual-world application and usage of various actuators and sensors interfacing methods alongside physical optimization of models present potential problems whereas visualizing and identifying the advantages and disadvantages of various approaches to remedies. This research reviews the various self-reconfigurable robotic schemes with a brief overview of history and architecture of the robotic schemes. Later in this contribution, the problems in the design of hardware, control and planning algorithms, mixed hardware and software problems and in its application problems that are underway are critically evaluated with respect to modular self-reconfigurable robotics.


2008 ◽  
Vol 17 (2) ◽  
pp. 62-68 ◽  
Author(s):  
Cathy Binger

Abstract Many children who use AAC experience difficulties with acquiring grammar. At the 9th Annual Conference of ASHA's Special Interest Division 12, Augmentative and Alternative Communication, Binger presented recent research results from an intervention program designed to facilitate the bound morpheme acquisition of three school-aged children who used augmentative and alternative communication (AAC). Results indicated that the children quickly began to use the bound morphemes that were taught; however, the morphemes were not maintained until a contrastive approach to intervention was introduced. After the research results were presented, the conference participants discussed a wide variety of issues relating to grammar acquisition for children who use AAC. Some of the main topics of discussion included the following: provision of supports for grammar comprehension and expression, intervention techniques to support grammatical morpheme acquisition, and issues relating to AAC device use when teaching grammatical morpheme use.


Sign in / Sign up

Export Citation Format

Share Document