Temperature-dependent transduction characteristics of piezoelectric composite materials

Author(s):  
K.M. Rittenmyer
Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


A set of four tensors corresponding to Eshelby’s tensor in elasticity are obtained for an ellipsoidal inclusion embedded in an infinite piezoelectric medium. These tensors, which describe the elastic, piezoelectric, and dielectric constraint of the matrix, are obtained from W. F. Deeg’s solution to inclusion and inhomogeneity problems in piezoelectric solids. These tensors are then used as the backbone in the development of a micromechanics theory to predict the effective elastic, dielectric, and piezoelectric moduli of particle and fibre reinforced composite materials. The effects of interaction among inhomogeneities at finite concentrations are approximated through the Mori-Tanaka mean field approach. This approach, although widely utilized in the study of uncoupled elastic and dielectric behaviour, has not before been applied to the study of coupled behaviour. To help ensure confidence in the theory, the analytical predictions are proven to be self-consistent, diagonally symmetric, and to exhibit the correct behaviour in the low and high concentration limits. Finally, numerical results are presented to illustrate the effects of the concentration, shape, and material properties of the reinforcement on the effective properties of piezoelectric composites and analytical predictions are shown to result in good agreement with existing experimental data.


Author(s):  
Florent Retailleau ◽  
Vadim Allheily ◽  
Lionel Merlat ◽  
Jean-François Henry ◽  
Jaona Harifidy Randrianalisoa

Sign in / Sign up

Export Citation Format

Share Document