Frequency response from one-dimensional rough surface with the pulsed wave excitation by the FDTD method

Author(s):  
Li-xin Guo ◽  
Juan Li ◽  
Ke Li
2002 ◽  
Vol 22 (1) ◽  
pp. 27-35 ◽  
Author(s):  
N. K. Kouveliotis ◽  
P. T. Trakadas ◽  
A. I. Stefanogiannis ◽  
C. N. Capsalis

Axioms ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Eng Leong Tan

The leapfrog schemes have been developed for unconditionally stable alternating-direction implicit (ADI) finite-difference time-domain (FDTD) method, and recently the complying-divergence implicit (CDI) FDTD method. In this paper, the formulations from time-collocated to leapfrog fundamental schemes are presented for ADI and CDI FDTD methods. For the ADI FDTD method, the time-collocated fundamental schemes are implemented using implicit E-E and E-H update procedures, which comprise simple and concise right-hand sides (RHS) in their update equations. From the fundamental implicit E-H scheme, the leapfrog ADI FDTD method is formulated in conventional form, whose RHS are simplified into the leapfrog fundamental scheme with reduced operations and improved efficiency. For the CDI FDTD method, the time-collocated fundamental scheme is presented based on locally one-dimensional (LOD) FDTD method with complying divergence. The formulations from time-collocated to leapfrog schemes are provided, which result in the leapfrog fundamental scheme for CDI FDTD method. Based on their fundamental forms, further insights are given into the relations of leapfrog fundamental schemes for ADI and CDI FDTD methods. The time-collocated fundamental schemes require considerably fewer operations than all conventional ADI, LOD and leapfrog ADI FDTD methods, while the leapfrog fundamental schemes for ADI and CDI FDTD methods constitute the most efficient implicit FDTD schemes to date.


2011 ◽  
Vol 418-420 ◽  
pp. 679-683
Author(s):  
Bei Jia He ◽  
Xin Yi Chen ◽  
Jian Bo Wang ◽  
Jun Lu ◽  
Jian Chang ◽  
...  

To expand the bandgap's width of the one-dimensional photonic crystal, a crystal named SiO2/Metal/MgF2 is formed by joining some metals into the crystal SiO2/MgF2. Furthermore the Finite Difference Time Domain (FDTD) method is used to explore the metals' influence on the crystal's transmission characteristics. The simulation results show that the metals joined could expand the width of the one-dimensional photonic crystal's bandgap effectively and the bandgap's width increases when the metals' thickness increases. Meanwhile the bandgap's characteristic is affected by the metals' material-characteristic. The higher the plasma frequency is, the wider the bandgap's width will be and the more the number of the bandgaps will be. On the other hand, the metals' damping frequency has no significant effect on the bandgap, but would make the bandgap-edge's transmittance decrease slightly.


2012 ◽  
Vol 490-495 ◽  
pp. 603-607
Author(s):  
Wei Tian ◽  
Xin Cheng Ren

One-dimensional Gaussion rough surface is simulated and employed by Monte Carlo Method, the composite backscattering from one-dimensional Gaussion rough surface with rectangular cross-section column above it is studied using Method of Moment. The curves of composite backscattering coefficient with scattering angle and frequency of incident wave are simulated by numerical calculation, the influence of the root mean square and the correlation length of rough surface fluctuation, the height between the center of the rectangular cross-section column and the rough surface, the length and the width of the rectangular cross-section column is discussed. The characteristic of the composite back-scatting from one-dimensional Gaussion rough surface with a rectangular cross-section column above it is obtained. The results show that the influences of the root mean square and the correlation length of rough surface fluctuation, the height between the center of the rectangular cross-section column and the rough surface, the width of the rectangular cross-section column on the composite backscattering coefficients are obvious while the influences of the length of the rectangular cross-section column on the complex backscattering coefficient is less.


2009 ◽  
Vol 77 (1) ◽  
Author(s):  
Z. K. Peng ◽  
Z. Q. Lang

It is well-known that if one or a few components in a structure are of nonlinear properties, the whole structure will behave nonlinearly, and the nonlinear component is often the component where a fault or an abnormal condition occurs. Therefore it is of great significance to detect the position of nonlinear components in structures. Nonlinear output frequency response functions (NOFRFs) are a new concept proposed by the authors for the analysis of nonlinear systems in the frequency domain. The present study is concerned with investigating the NOFRFs of nonlinear one-dimensional chain type systems, which have been widely used to model many real life structures. A series of important properties of the NOFRFs of locally nonlinear one-dimensional chain type structures are revealed. These properties clearly describe the relationships between the NOFRFs of different masses in a one-dimensional chain type system, and allow effective methods to be developed for detecting the position of a nonlinear component in the system. The results are an extension of the authors’ previous research studies to a more general and practical case, and have considerable significance in fault diagnosis and location in engineering systems and structures.


Sign in / Sign up

Export Citation Format

Share Document