An Improved Heuristic Path Planning Algorithm for Minimizing Energy Consumption in Distributed Multi-AGV Systems

Author(s):  
Yindong Lian ◽  
Langwen Zhang ◽  
Wei Xie ◽  
Kaixin Wang
2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Peiling Cui ◽  
Jingxian He ◽  
Jian Cui ◽  
Haitao Li

Double-gimbal control moment gyros can implement the satellite attitude maneuver efficiently. In order to reduce the energy consumption of double-gimbal control moment gyros and avoid the singularity state, an attitude maneuver path planning method is proposed by using the improved Fourier basis algorithm. Considering that the choice of the Fourier coefficients is important for the Fourier basis algorithm to converge quickly, a choosing method of the initial Fourier coefficients which can reduce the computational time of the path planning algorithm notably is proposed. Moreover, an attitude-tracking feedback controller based on the Fourier basis path planning algorithm is designed to acquire robustness. Simulation results show that the proposed path planning algorithm can implement attitude maneuver path planning in shortened time. Meanwhile, the feasibility of the attitude-tracking feedback controller which is based on the above path planning algorithm is verified in terms of the low energy consumption, high attitude-tracking precision, and the safe use of double-gimbal control moment gyros.


2021 ◽  
Vol 11 (15) ◽  
pp. 6939
Author(s):  
Mohamed Saad ◽  
Ahmed I. Salameh ◽  
Saeed Abdallah ◽  
Ali El-Moursy ◽  
Chi-Tsun Cheng

This paper explores the problem of energy-efficient shortest path planning on off-road, natural, real-life terrain for unmanned ground vehicles (UGVs). We present a greedy path planning algorithm based on a composite metric routing approach that combines the energy consumption and distance of the path. In our work, we consider the Terramechanics between the UGV and the terrain soil to account for the wheel sinkage effect, in addition to the terrain slope and soil deformation limitations in the development of the path planning algorithm. As benchmarks for comparison, we use a recent energy-cost minimization approach, in addition to an ant colony optimization (ACO) implementation. Our results indicate that the proposed composite metric routing approach outperforms the state-of-the-art energy-cost minimization method in terms of the resulting path distance, with a negligible increase in energy consumption. Moreover, our results indicate also that the proposed greedy algorithm strongly outperforms the ACO implementation in terms of the quality of the paths obtained and the algorithm running time. In fact, the running time of our proposed algorithm indicates its suitability for large natural terrain graphs with thousands of nodes and tens of thousands of links.


2021 ◽  
Vol 9 (3) ◽  
pp. 252
Author(s):  
Yushan Sun ◽  
Xiaokun Luo ◽  
Xiangrui Ran ◽  
Guocheng Zhang

This research aims to solve the safe navigation problem of autonomous underwater vehicles (AUVs) in deep ocean, which is a complex and changeable environment with various mountains. When an AUV reaches the deep sea navigation, it encounters many underwater canyons, and the hard valley walls threaten its safety seriously. To solve the problem on the safe driving of AUV in underwater canyons and address the potential of AUV autonomous obstacle avoidance in uncertain environments, an improved AUV path planning algorithm based on the deep deterministic policy gradient (DDPG) algorithm is proposed in this work. This method refers to an end-to-end path planning algorithm that optimizes the strategy directly. It takes sensor information as input and driving speed and yaw angle as outputs. The path planning algorithm can reach the predetermined target point while avoiding large-scale static obstacles, such as valley walls in the simulated underwater canyon environment, as well as sudden small-scale dynamic obstacles, such as marine life and other vehicles. In addition, this research aims at the multi-objective structure of the obstacle avoidance of path planning, modularized reward function design, and combined artificial potential field method to set continuous rewards. This research also proposes a new algorithm called deep SumTree-deterministic policy gradient algorithm (SumTree-DDPG), which improves the random storage and extraction strategy of DDPG algorithm experience samples. According to the importance of the experience samples, the samples are classified and stored in combination with the SumTree structure, high-quality samples are extracted continuously, and SumTree-DDPG algorithm finally improves the speed of the convergence model. Finally, this research uses Python language to write an underwater canyon simulation environment and builds a deep reinforcement learning simulation platform on a high-performance computer to conduct simulation learning training for AUV. Data simulation verified that the proposed path planning method can guide the under-actuated underwater robot to navigate to the target without colliding with any obstacles. In comparison with the DDPG algorithm, the stability, training’s total reward, and robustness of the improved Sumtree-DDPG algorithm planner in this study are better.


Sign in / Sign up

Export Citation Format

Share Document