Analog front-end circuit with low-noise amplifier and high-pass sigma-delta modulator for an EEG or ECoG acquisition system

Author(s):  
Jia-Hua Hong ◽  
Ming-Chun Liang ◽  
Ming-Yang Haung ◽  
Tsung-Heng Tsai ◽  
Qiang Fang ◽  
...  
2019 ◽  
Vol 28 (08) ◽  
pp. 1950137
Author(s):  
R. Nagulapalli ◽  
K. Hayatleh ◽  
S. Barker ◽  
A. A. Tammam ◽  
N. Yassine ◽  
...  

This paper presents a fully integrated front-end, low noise amplifier (LNA), dedicated to the processing of various types of bio-medical signals, such as Electrocardiogram (ECG), Electroencephalography (EEG), Axon Action Potential (AAP). A novel noise reduction technique, for an operational transconductance amplifier (OTA), has been proposed. This adds a current steering branch parallel to the differential pair, with a view to reducing the noise contribution by the cascode current sources. Hence, this reduces the overall input-referred noise of the LNA, without adding any additional power. The proposed technique implemented in 65[Formula: see text]nm CMOS technology achieves 30 dB closed-loop voltage gain, 0.05[Formula: see text]Hz lower cut-off frequency and 100 MHz 3-dB bandwidth. It operates at 1.2[Formula: see text]V power supply and draws 1[Formula: see text][Formula: see text]A static current. The prototype described in this paper occupies 3300[Formula: see text][Formula: see text]m2 silicon area.


2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000207-000210
Author(s):  
Martin Oppermann ◽  
Felix Thurow ◽  
Ralf Rieger

Abstract Next generation of RF sensor modules, mainly for airborne applications, will cover a variety of multifunction in terms of different operating modes, e.g. Radar, EW and Communications / Datalinks. The operating frequencies will cover a bandwidth of > 10 GHz and for realisation of modern Active Electronically Steered Antennas (AESA) the Transmit/Receive (T/R) modules have to match with challenging geometry demands, and RF requirements, like switching and filtering between different operational frequencies in transmit and receive mode. New GaN technology based MMICs, e.g. LNA, HPA are in development and multifunctional components (MFC MMICs) cover more than one RF function in one chip. Different front end demonstrators will be presented, based on multilayer ceramic (LTCC) and RF-PCB and associated assembly technologies, like chip&wire and SMD reflow soldering. These TRM front ends include a Low Noise Amplifier with an integrated Switch (LNA/SW) and for characterisation the measured Noise Figure (NF), a key characteristic for receive performance, will be compared. The need for high integration on module level is obvious and therefore specific demands for low loss ceramic and PCB based modules, packages and housings exist.


2019 ◽  
Vol 25 (2) ◽  
pp. 181-203
Author(s):  
S. Radha ◽  
D.S. Shylu ◽  
P. Nagabushanam ◽  
Jisha Mathew

Sign in / Sign up

Export Citation Format

Share Document