Synchrotron radiation μCT of biological tissue

Author(s):  
F. Peyrin ◽  
P. Cloetens
Author(s):  
T. E. Hutchinson ◽  
D. E. Johnson ◽  
A. C. Lee ◽  
E. Y. Wang

Microprobe analysis of biological tissue is now in the end phase of transition from instrumental and technique development to applications pertinent to questions of physiological relevance. The promise,implicit in early investigative efforts, is being fulfilled to an extent much greater than many had predicted. It would thus seem appropriate to briefly report studies exemplifying this, ∿. In general, the distributions of ions in tissue in a preselected physiological state produced by variations in the external environment is of importance in elucidating the mechanisms of exchange and regulation of these ions.


Author(s):  
K. N. Colonna ◽  
G. Oliphant

Harmonious use of Z-contrast imaging and digital image processing as an analytical imaging tool was developed and demonstrated in studying the elemental constitution of human and maturing rabbit spermatozoa. Due to its analog origin (Fig. 1), the Z-contrast image offers information unique to the science of biological imaging. Despite the information and distinct advantages it offers, the potential of Z-contrast imaging is extremely limited without the application of techniques of digital image processing. For the first time in biological imaging, this study demonstrates the tremendous potential involved in the complementary use of Z-contrast imaging and digital image processing.Imaging in the Z-contrast mode is powerful for three distinct reasons, the first of which involves tissue preparation. It affords biologists the opportunity to visualize biological tissue without the use of heavy metal fixatives and stains. For years biologists have used heavy metal components to compensate for the limited electron scattering properties of biological tissue.


Author(s):  
B. Jouffrey ◽  
D. Dorignac ◽  
A. Bourret

Since the early works on GP zones and the model independently proposed by Preston and Guinier on the first steps of precipitation in supersaturated solid solution of aluminium containing a few percent of copper, many works have been performed to understand the structure of different stages in the sequence of precipitation.The scheme which is generally admitted can be drawn from a work by Phillips.In their original model Guinier and Preston analysed a GP zone as composed of a single (100) copperrich plane surrounded by aluminum atomic planes with a slightly shorter distance from the original plane than in the solid solution.From X-ray measurements it has also been shown that GP1 zones were not only copper monolayer zones. They could be up to a few atomic planes thick. Different models were proposed by Guinier, Gerold, Toman. Using synchrotron radiation, proposals have been recently made.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S558-S558
Author(s):  
Masahiro Tamaki ◽  
Takashi Mizobe ◽  
Keiji Kidoguchi ◽  
Junnji Koyama ◽  
Takeshi Kondoh ◽  
...  

1973 ◽  
Vol 34 (C8) ◽  
pp. C8-63-C8-63
Author(s):  
J. BARRINGTON LEIGH ◽  
G. ROSENBAUM

1987 ◽  
Vol 48 (C1) ◽  
pp. C1-175-C1-181
Author(s):  
S. AHMAD ◽  
M. OHTOMO ◽  
R. W. WHITWORTH

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1891-C8-1892
Author(s):  
J. Baruchel ◽  
M. Schlenker ◽  
J. Sandonis

Sign in / Sign up

Export Citation Format

Share Document