scholarly journals Automated monitoring of human embryonic cells up to the 5-cell stage in time-lapse microscopy images

Author(s):  
Aisha Khan ◽  
Stephen Gould ◽  
Mathieu Salzmann
Reproduction ◽  
2018 ◽  
Vol 155 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Robert Milewski ◽  
Marcin Szpila ◽  
Anna Ajduk

In vitrofertilization has become increasingly popular as an infertility treatment. In order to improve efficiency of this procedure, there is a strong need for a refinement of existing embryo assessment methods and development of novel, robust and non-invasive selection protocols. Studies conducted on animal models can be extremely helpful here, as they allow for more extensive research on the potential biomarkers of embryo quality. In the present paper, we subjected mouse embryos to non-invasive time-lapse imaging and combined the Particle Image Velocimetry analysis of cytoplasmic dynamics in freshly fertilized oocytes with the morphokinetic analysis of recordings covering 5 days of preimplantation development. Our results indicate that parameters describing cytoplasmic dynamics and cleavage divisions independently correspond to mouse embryo’s capacity to form a high-quality blastocyst. We also showed for the first time that these parameters are associated with the percentage of abnormal embryonic cells with fragmented nuclei and with embryo’s ability to form primitive endoderm, one of the cell lineages differentiated during preimplantation development. Finally, we present a model that links selected cytoplasmic and morphokinetic parameters reflecting frequency of fertilization-induced Ca2+-oscillations and timing of 4-cell stage and compaction with viability of the embryo assessed as the total number of cells at the end of its preimplantation development. Our results indicate that a combined analysis of cytoplasmic dynamics and morphokinetics may facilitate the assessment of embryo’s ability to form high-quality blastocysts.


2019 ◽  
Vol 31 (12) ◽  
pp. 1874 ◽  
Author(s):  
S. Meyers ◽  
V. Burruel ◽  
M. Kato ◽  
A. de la Fuente ◽  
D. Orellana ◽  
...  

In this study we examined the timeline of mitotic events of invitro-produced equine embryos that progressed to blastocyst stage using non-invasive time-lapse microscopy (TLM). Intracytoplasmic sperm injection (ICSI) embryos were cultured using a self-contained imaging incubator system (Miri®TL; Esco Technologies) that captured brightfield images at 5-min intervals that were then generated into video for retrospective analysis. For all embryos that progressed to the blastocyst stage, the initial event of extrusion of acellular debris preceded all first cleavages and occurred at mean (±s.e.m.) time of 20.0±1.1h after ICSI, whereas 19 of 24 embryos that did not reach the blastocyst stage demonstrated debris extrusion that occurred at 23.8±1.1h, on average 4h longer for this initial premitotic event (P<0.05). Embryos that failed to reach the blastocyst stage demonstrated a 4-h delay compared with those that reached the blastocyst stage to reach the 2-cell stage (P<0.05). All embryos that reached the blastocyst stage expressed pulsation of the blastocyst with visible expansion and contraction at approximate 10-min intervals, or five to six times per hour. Using a logit probability method, we determined that 2- and 8-cell stage embryos could reasonably predict which embryos progressed to the blastocyst stage. Together, the results indicate that TLM for equine embryo development is a dynamic tool with promise for predicting successful embryo development.


Sign in / Sign up

Export Citation Format

Share Document