Parallel processing for the steady state solutions of large-scale non-linear models of power systems

Author(s):  
F.M.A. Salam ◽  
L. Ni ◽  
X. Sun ◽  
S. Guo
2018 ◽  
Vol 49 (6) ◽  
pp. 1788-1803 ◽  
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Arezoo Ahmadian ◽  
Mohammad Valipour

Abstract In this study, to reflect the effect of large-scale climate signals on runoff, these indices are accompanied with rainfall (the most effective local factor in runoff) as the inputs of the hybrid model. Where one-year in advance forecasting of reservoir inflows can provide data to have an optimal reservoir operation, reports show we still need more accurate models which include all effective parameters to have more forecasting accuracy than traditional linear models (ARMA and ARIMA). Thus, hybridization of models was employed for improving the accuracy of flow forecasting. Moreover, various forecasters including large-scale climate signals were tested to promote forecasting. This paper focuses on testing MARMA-NARX hybrid model to enhance the accuracy of monthly inflow forecasts. Since the inflow in different periods of the year has in linear and non-linear trends, the hybrid model is proposed as a means of combining linear model, monthly autoregressive moving average (MARMA), and non-linear model, nonlinear autoregressive model with exogenous (NARX) inputs to upgrade the accuracy of flow forecasting. The results of the study showed enhanced forecasting accuracy through using the hybrid model.


2018 ◽  
Author(s):  
Tuure Hameri ◽  
Georgios Fengos ◽  
Meric Ataman ◽  
Ljubisa Miskovic ◽  
Vassily Hatzimanikatis

AbstractLarge-scale kinetic models are used for designing, predicting, and understanding the metabolic responses of living cells. Kinetic models are particularly attractive for the biosynthesis of target molecules in cells as they are typically better than other types of models at capturing the complex cellular biochemistry. Using simpler stoichiometric models as scaffolds, kinetic models are built around a steady-state flux profile and a metabolite concentration vector that are typically determined via optimization. However, as the underlying optimization problem is underdetermined, even after incorporating available experimental omics data, one cannot uniquely determine the operational configuration in terms of metabolic fluxes and metabolite concentrations. As a result, some reactions can operate in either the forward or reverse direction while still agreeing with the observed physiology. Here, we analyze how the underlying uncertainty in intracellular fluxes and concentrations affects predictions of constructed kinetic models and their design in metabolic engineering and systems biology studies. To this end, we integrated the omics data of optimally grownEscherichia coliinto a stoichiometric model and constructed populations of non-linear large-scale kinetic models of alternative steady-state solutions consistent with the physiology of theE. coliaerobic metabolism. We performed metabolic control analysis (MCA) on these models, highlighting that MCA-based metabolic engineering decisions are strongly affected by the selected steady state and appear to be more sensitive to concentration values rather than flux values. To incorporate this into future studies, we propose a workflow for moving towards more reliable and robust predictions that are consistent with all alternative steady-state solutions. This workflow can be applied to all kinetic models to improve the consistency and accuracy of their predictions. Additionally, we show that, irrespective of the alternative steady-state solution, increased activity of phosphofructokinase and decreased ATP maintenance requirements would improve cellular growth of optimally grownE. coli.


2020 ◽  
pp. 47-53
Author(s):  
B. Ayuev ◽  
V. Davydov ◽  
P. Erokhin ◽  
V. Neuymin ◽  
A. Pazderin

Steady-state equations play an essential part in the theory of power systems and the practice of computations. These equations are directly or mediately used almost in all areas of the theory of power system states, constituting its basis. This two-part study deals with a geometrical interpretation of steady-state solutions in a power space. Part I has proposed considering the power system's steady states in terms of power surface. Part II is devoted to an analytical study of the power surface through its normal vectors. An interrelationship between the entries of the normal vector is obtained through incremental transmission loss coefficients. Analysis of the normal vector has revealed that in marginal states, its entry of the slack bus active power equals zero, and the incremental transmission loss coefficient of the slack bus equals one. Therefore, any attempts of the slack bus to maintain the system power balance in the marginal state are fully compensated by associated losses. In real-world power systems, a change in the slack bus location in the marginal state makes this steady state non-marginal. Only in the lossless power systems, the marginal states do not depend on a slack bus location.


2020 ◽  
pp. 37-46
Author(s):  
B. Ayuev ◽  
V. Davydov ◽  
P. Erokhin ◽  
V. Neuymin ◽  
A. Pazderin

Steady-state equations play a fundamental role in the theory of power systems and computation practice. These equations are directly or mediately used almost in all areas of the power system state theory, constituting its basis. This two-part study deals with a geometrical interpretation of steady-state solutions in a power space. Part I considers steady states of the power system as a surface in the power space. A power flow feasibility region is shown to be widely used in power system theories. This region is a projection of this surface along the axis of a slack bus active power onto a subspace of other buses power. The findings have revealed that the obtained power flow feasibility regions, as well as marginal states of the power system, depend on a slack bus location. Part II is devoted to an analytical study of the power surface of power system steady states.


2019 ◽  
Vol 490 (4) ◽  
pp. 5078-5087 ◽  
Author(s):  
Alejandro Aguayo-Ortiz ◽  
Emilio Tejeda ◽  
X Hernandez

ABSTRACT Steady-state, spherically symmetric accretion flows are well understood in terms of the Bondi solution. Spherical symmetry, however, is necessarily an idealized approximation to reality. Here we explore the consequences of deviations away from spherical symmetry, first through a simple analytic model to motivate the physical processes involved, and then through hydrodynamical, numerical simulations of an ideal fluid accreting on to a Newtonian gravitating object. Specifically, we consider axisymmetric, large-scale, small-amplitude deviations in the density field such that the equatorial plane is overdense as compared to the polar regions. We find that the resulting polar density gradient dramatically alters the Bondi result and gives rise to steady-state solutions presenting bipolar outflows. As the density contrast increases, more and more material is ejected from the system, attaining speeds larger than the local escape velocities for even modest density contrasts. Interestingly, interior to the outflow region, the flow tends locally towards the Bondi solution, with a resulting total mass accretion rate through the inner boundary choking at a value very close to the corresponding Bondi one. Thus, the numerical experiments performed suggest the appearance of a maximum achievable accretion rate, with any extra material being ejected, even for very small departures from spherical symmetry.


Sign in / Sign up

Export Citation Format

Share Document