Creating hard problem instances in logic synthesis using exact minimization

Author(s):  
W. Gunther ◽  
R. Drechsler
Author(s):  
Reza Abbasian ◽  
Malek Mouhoub

Despite some success of Genetic Algorithms (GAs) when tackling Constraint Satisfaction Problems (CSPs), they generally suffer from poor crossover operators. In order to overcome this limitation in practice, we propose a novel crossover specifically designed for solving CSPs including Temporal CSPs (TCSPs). Together with a variable ordering heuristic and an integration into a parallel architecture, this proposed crossover enables the solving of large and hard problem instances as demonstrated by the experimental tests conducted on randomly generated CSPs and TCSPs based on the model RB. We will indeed demonstrate, through these tests, that our proposed method is superior to the known GA-based techniques for CSPs. In addition, we will show that we are able to compete with the efficient MAC-based Abscon 109 solver for random problem instances as well as those instances taken from Lecoutre’s CSP library. Finally, we conducted additional tests on very large consistent and over constrained CSPs and TCSPs instances in order to show the ability of our method to deal with constraint problems in real time. This corresponds to solving the CSP or the TCSP by giving a solution with a quality (number of solved constraints) depending on the time allocated for computation.


2009 ◽  
Vol 20 (9) ◽  
pp. 2332-2343
Author(s):  
Zhi-Qiang LI ◽  
Wen-Qian LI ◽  
Han-Wu CHEN

Author(s):  
Apangshu Das ◽  
Sambhu Nath Pradhan

Background: Output polarity of the sub-function is generally considered to reduce the area and power of a circuit at the two-level realization. Along with area and power, the power-density is also one of the significant parameter which needs to be consider, because power-density directly converges to circuit temperature. More than 50% of the modern day integrated circuits are damaged due to excessive overheating. Methods: This work demonstrates the impact of efficient power density based logic synthesis (in the form of suitable polarity selection of sub-function of Programmable Logic Arrays (PLAs) for its multilevel realization) for the reduction of temperature. Two-level PLA optimization using output polarity selection is considered first and compared with other existing techniques and then And-Invert Graphs (AIG) based multi-level realization has been considered to overcome the redundant solution generated in two-level synthesis. AIG nodes and associated power dissipation can be reduced by rewriting, refactoring and balancing technique. Reduction of nodes leads to the reduction of the area but on the contrary increases power and power density of the circuit. A meta-heuristic search approach i.e., Nondominated Sorting Genetic Algorithm-II (NSGA-II) is proposed to select the suitable output polarity of PLA sub-functions for its optimal realization. Results: Best power density based solution saves up to 8.29% power density compared to ‘espresso – dopo’ based solutions. Around 9.57% saving in area and 9.67% saving in power (switching activity) are obtained with respect to ‘espresso’ based solution using NSGA-II. Conclusion: Suitable output polarity realized circuit is converted into multi-level AIG structure and synthesized to overcome the redundant solution at the two-level circuit. It is observed that with the increase in power density, the temperature of a particular circuit is also increases.


Author(s):  
Marcello Massimini ◽  
Giulio Tononi

This chapter uses thought experiments and practical examples to introduce, in a very accessible way, the hard problem of consciousness. Soon, machines may behave like us to pass the Turing test and scientists may succeed in copying and simulating the inner workings of the brain. Will all this take us any closer to solving the mysteries of consciousness? The reader is taken to meet different kind of zombies, the philosophical, the digital, and the inner ones, to understand why many, scientists and philosophers alike, doubt that the mind–body problem will ever be solved.


Sign in / Sign up

Export Citation Format

Share Document